bzoj 1592 dp
就是dp啊
f[i][j]表示到第i位,最后一位高度是j的最小花费
转移::f[i][j]=minn(f[i-1][k])+
abs
(a[i]-num[j]);(k<=j)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
int f[2005][2005],n,a[2005],b[2005],num[2005];
int ans;
bool bo;
int main()
{
scanf("%d",&n);
memset(f,0x7f,sizeof f); ans=0x7fffffff;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
num[i]=a[i];
b[n-i+1]=a[i];
}
num[0]=0;
sort(num,num+n+1);
int num_cnt=unique(num,num+n+1)-num;
f[0][0]=0;
for(int i=1;i<=n;i++){
int minn=0x3f3f3f3f;
for(int j=0;j<num_cnt;j++){
minn=min(minn,f[i-1][j]);
f[i][j]=minn+abs(a[i]-num[j]);
}
}
for(int j=0;j<num_cnt;j++)
ans=min(ans,f[n][j]);
memset(f,0x7f,sizeof f);
f[0][0]=0;
for(int i=1;i<=n;i++){
int minn=0x3f3f3f3f;
for(int j=0;j<num_cnt;j++){
minn=min(minn,f[i-1][j]);
f[i][j]=minn+abs(b[i]-num[j]);
}
}
for(int j=0;j<num_cnt;j++)
ans=min(ans,f[n][j]);
printf("%d\n",ans);
return 0;
}
bzoj 1592 dp的更多相关文章
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...
- bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...
- [BZOJ 1592] Making The Grade路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 704 Solv ...
- BZOJ - 1003 DP+最短路
这道题被马老板毒瘤了一下,TLE到怀疑人生 //然而BZOJ上妥妥地过了(5500ms+ -> 400ms+) 要么SPFA太玄学要么是初始化block被卡到O(n^4) 不管了,不改了 另外D ...
- BZOJ 2431 & DP
题意:求逆序对数量为k的长度为n的排列的个数 SOL: 显然我们可以对最后一位数字进行讨论,判断其已经产生多少逆序对数量,然后对于前n-1位同样考虑---->每一个长度的排列我们都可以看做是相同 ...
- bzoj 1791 DP
首先对于一棵树我们可以tree_dp来解决这个问题,那么对于环上每个点为根的树我们可以求出这个树的一端为根的最长链,并且在tree_dp的过程中更新答案.那么我们对于环,从某个点断开,破环为链,然后再 ...
- BZOJ 1207 DP
打一次鼹鼠必然是从曾经的某一次打鼹鼠转移过来的 以打每一个鼹鼠时的最优解为DP方程 #include<iostream> #include<cstdio> #include&l ...
随机推荐
- WPF中使用后台代码来控制TreeView的选择项(SelectedItem)以及展开节点操作
首先为TreeView控件制作一个Style: <Style x:Key="LibraryTreeViewItemStyle" TargetType="{x:Typ ...
- was上的应用程序部分启动的原因
最近几天为了方便联调,我把两个项目配置到was测试环境上,前几天还好好的,昨天忽然有一个项目反复安装后都呈现部分启动的状态,打开节点一看,偏偏没启动的那个节点就是我需要用的79节点. 这让我很郁闷,硬 ...
- 如何在Visual Studio 2017中使用C# 7+语法
前言 之前不知看过哪位前辈的博文有点印象C# 7控制台开始支持执行异步方法,然后闲来无事,搞着,搞着没搞出来,然后就写了这篇博文,不喜勿喷,或许对您有帮助. 在Visual Studio 2017配置 ...
- Android平台的Swift—Kotlin
WeTest 导读 Kotlin 已经出来较长一段时间了,有些同学已经对Kotlin进行了深入的学习,甚至已经运用到了自己的项目当中,但是还有较多同学可能只是听过Kotlin或简单了解过,这篇文章的目 ...
- Redis+Django(Session,Cookie、Cache)的用户系统
转自 http://www.cnblogs.com/BeginMan/p/3890761.html 一.Django authentication django authentication 提供了一 ...
- 微信小程序-框架详解(1)
配置 -app.json文件对微信小程序进行全局配置,决定页面文件的路径.窗口表现.设置网络超时时间.tab等 { "pages": [ //决定页面文件的路径 "pag ...
- Redis案例——商品秒杀,购物车
秒杀案例: <?php header("content-type:text/html;charset=utf-8"); $redis = new redis(); $resu ...
- flex 访问webservice方法及跨域问题解决
一.flex调用webserivice代码 import mx.rpc.soap.WebService; import mx.rpc.events.FaultEvent; import mx.rp ...
- HTML学习笔记3:文字和段落
①标题标签 <h1></h1> ~ <h6></h6>分别对应字体不同的大小,数字又小到大对应字体由大到小 ②段落 <p> ...
- .net Core 微服务框架 surging 使用
surging 是一个分布式微服务框架,提供高性能RPC远程服务调用,采用Zookeeper.Consul作为surging服务的注册中心, 集成了哈希,随机,轮询作为负载均衡的算法,RPC集成采用的 ...