//待更qwq

反演原理

二项式反演

\[g_i=\sum_{j=1}^i {\binom ij} f_j\]

, 则有

\[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \]

同时, 若

\[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\]

, 则有

\[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\]

通过反演原理和组合数的性质不难证明.

0/1? todo

Stirling 反演

Min-Max 容斥

形式

Min-Max 容斥 (最值反演) 是对集合的 \(\min()\) 和 \(\max()\) 函数的容斥.

设 \(S\) 为一个集合, \(min()\) 和 \(max()\) 为集合的最小/最大元素, 那么有

\[\max(S)=\sum_{T \subseteq S}(-1)^{|T|-1}\min(T)\]

\[\min(S)=\sum_{T \subseteq S}(-1)^{|T|-1}\max(T)\]

证明

引理: 在n(n > 0)个数中选奇数个和选偶数个的方案数相同, 即

\[\sum _{i=0}^n (-1)^i \binom{n}{i} = [n = 0]\]

这可以通过对 \(n\) 的奇偶性分类讨论来证明.

对于第一个式子, 只需枚举 \(\min(T)\), 发现除了 \(\max(S)\) 之外的元素系数都为 \(0\), 因此得证.

第二个式子类似.

事实上, 这两个式子也可以通过反演原理直接得到: Min-Max容斥学习笔记 | LNRBHAW

这两个式子在期望意义下也是对的: 设 \(E(x)\) 表示元素 \(x\) 出现的期望操作次数, 那么

\[E(\max(S))=\sum_{T \subseteq S}(-1)^{|T|-1}E(\min(T))\]

\[E(\min(S))=\sum_{T \subseteq S}(-1)^{|T|-1}E(\max(T))\]

对于一些题而言, 往往把元素的值设为它的出现时间. 那么, \(E(\max(S))\) 就表示 \(S\) 中所有元素都出现的期望操作次数, \(E(\min(S))\) 就表示 \(S\) 中出现任意元素的期望操作次数.

kth Min-Max

上式的推广.

设 \(kth\max (S)\) 表示 \(S\) 的第 \(k\) 大元素, 则

\[ kth\max(S)=\sum_{T \subseteq S} (-1)^{|T|-k} {|T|-1 \choose k-1} \min(T) \]

证明过程与上面类似.

同样, 它在期望意义下也是对的.

题目

  • hdu4336 Card Collector
  • hdu4624 Endless Spin
  • luogu3175 [HAOI2015]按位或
  • loj2542 「PKUWC 2018」随机游走
  • luogu4707 重返现世

子集反演

莫比乌斯反演

设数论函数 \(F(x)\), \(f(x)\),

  • 若\(F(n)=\sum_{d|n}f(d)\), 则有
    \[ f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d}) \]
  • 若\(F(n)=\sum_{n|d}f(d)\)
    \[f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)\]

但是其实更常用的还是这个
\[\sum_{d|n}\mu(d)=[n=1]\]

参考资料

https://www.cnblogs.com/Mr-Spade/p/9636968.html

https://lnrbhaw.github.io/2019/01/05/Min-Max%E5%AE%B9%E6%96%A5%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%AE%B0/

https://www.cnblogs.com/ljq-despair/p/8678855.html

https://www.cnblogs.com/Mr-Spade/p/9638430.html

https://changxv.coding.me/2018/07/10/%E5%90%84%E7%A7%8D%E5%8F%8D%E6%BC%94/

反演魔术:反演原理及二项式反演 – Miskcoo's Space

[模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演的更多相关文章

  1. LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】

    题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...

  2. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  3. ☆ [POI2007] ZAP-Queries 「莫比乌斯反演」

    题目类型:莫比乌斯反演 传送门:>Here< 题意:求有多少对正整数对\((a,b)\),满足\(0<a<A\),\(0<b<B\),\(gcd(a,b)=d\) ...

  4. UVa 11014 (莫比乌斯反演) Make a Crystal

    这个题是根据某个二维平面的题改编过来的. 首先把问题转化一下, 就是你站在原点(0, 0, 0)能看到多少格点. 答案分为三个部分: 八个象限里的格点,即 gcd(x, y, z) = 1,且xyz均 ...

  5. BZOJ 2301 莫比乌斯反演入门

    2301: [HAOI2011]Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函 ...

  6. LOJ6519. 魔力环(莫比乌斯反演+生成函数)

    题目链接 https://loj.ac/problem/6519 题解 这里给出的解法基于莫比乌斯反演.可以用群论计数的相关方法代替莫比乌斯反演,但两种方法的核心部分是一样的. 环计数的常见套路就是将 ...

  7. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

  8. 【LOJ#6374】网格(二项式反演,容斥)

    [LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. 斑马打印机的安装调试,生成PDF

    1.  我使用的斑马打印机GK888T.有问题打客服,耐心等待.售后电话4006456456得到了解决. 2.  我遇到的问题是打印一张之后指示灯变为红灯,时好时坏.解决方案,长按指示键,待指示灯连续 ...

  2. ASP.NET Core 基于JWT的认证(一)

    ASP.NET Core 基于JWT的认证(一) Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该token被设计 ...

  3. C# 插入文本框到PPT幻灯片

    概述 在文本框中我们可以实现的操作有很多,如插入文字.图片.设置字体大小.颜色.文本框背景填充.边框设置等.下面的示例中,将介绍通过C# 在PPT幻灯片中插入幻灯片的方法. 示例中包含了以下要点: 插 ...

  4. Java UrlRewriter伪静态技术运用深入分析

    通常我们为了更好的缓解服务器压力,和增强搜索引擎的友好面,都将文章内容生成静态页面. 但是有时为了能实时的显示一些信息,或者还想运用动态脚本解决一些问题,不能用静态的方式来展示网站内容,必须用到动态页 ...

  5. C++系列总结——多态

    前言 封装隐藏了类内部细节,通过继承加虚函数的方式,我们还可以做到隐藏类之间的差异,这就是多态(运行时多态).多态意味一个接口有多种行为,今天就来说说C++的多态是怎么实现的. 编译时多态感觉没什么好 ...

  6. HeadFirst设计模式读书笔记之工厂模式

    1. 简单工厂 1. 你开了一家披萨店,点披萨的方法可能是这样: public Pizza orderPizza(String type) { Pizza pizza; if (type.equals ...

  7. Dynamics 365中的批量删除作业执行频率可以高于每天一次吗?

    微软动态CRM专家罗勇 ,回复317或者20190314可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 我先来做一个例子,登 ...

  8. Git安装教程(windows)

    Git是当今最流行的版本控制软件,它包含了许多高级工具,这里小编就讲一下Git的安装. 下载地址:https://git-scm.com/downloads 首先如下图:(点击next) 第二步:文件 ...

  9. 【esri-loader】帮助文档翻译 part2 用法

    esri-loader怎么用?看完不要太清楚. [未完待续]!!! Q1: 在哪里用? 这是我最疑惑的问题之一,我知道要用esri-loader,肯定是某条js导入语句起作用的,但是你得告诉我写在哪里 ...

  10. Spring WebFlux 响应式编程学习笔记(一)

    各位Javaer们,大家都在用SpringMVC吧?当我们不亦乐乎的用着SpringMVC框架的时候,Spring5.x又悄(da)无(zhang)声(qi)息(gu)的推出了Spring WebFl ...