POJ-3169 Layout---差分约束系统+Bellman
题目链接:
https://vjudge.net/problem/POJ-3169
题目大意:
一些母牛按序号排成一条直线。有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离。如果没有输出-1,如果可以随便排输出-2,否则输出最大的距离。
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
思路:
设xi为第i头牛的x坐标
对于第一种要求,A和B之间距离不超过X(题目中A<B)
那就有:xB - xA <= X
对于第二种要求,A和B之间距离少于X(题目中A<B)
那就有:xB - xA >= X
对于上述两种不等式,可知这道题就是一堆不等式组,可以用差分约束系统来做。
u是起点,v是终点

对于第一种不等式,转化成A->B的边,权值为X
对于第二种不等式,先转化成上述形式,xA - xB <= -X,转化成B->A的边,权值是-X
在题目中隐含了一组不等式xi-1<=xi,转化成上述形式就是xi-1 - xi <= 0,边为i -> i-1权值是0
然后要看题目中求的是什么:
求的是从1到n的最大距离
就等价于xn-x1最大
等价于xn-x1 <= M需要求M的最小值(因为M没有最大值,最大值是正无穷)
这个不等式就是1到n的边,权值为M,说明题目求的是1到n的最短路,如果存在负环,输出-1,如果是INF输出-2,否则输出最短路长度。分析到这里就可以套模板啦
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef pair<int, int> Pair;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
int T, n, m, m1, m2;
struct edge
{
int u, v, w;
edge(int u, int v, int w):u(u), v(v), w(w){}
edge(){}
};
edge e[maxn];
int d[], tot;
void addedge(int u, int v, int w)
{
e[tot++] = edge(u, v, w);
}
bool Bellman()
{
int u, v, w;
memset(d, INF, sizeof(d));
d[] = ;
for(int j = ; j < n; j++)
{
for(int i = ; i < tot; i++)
{
u = e[i].u, v = e[i].v, w = e[i].w;
if(d[u] < INF && d[v] > d[u] + w)
{
d[v] = d[u] + w;
if(j == n - )return true;//存在负环,方程组无解
}
}
}
return false;
}
int main()
{
cin >> n >> m1 >> m2;
int u, v, w;
for(int i = ; i < m1; i++)//第一组边,u->v 权值w
{
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
}
for(int i = ; i < m2; i++)//第二组边 v->u 权值-w
{
scanf("%d%d%d", &u, &v, &w);
addedge(v, u, -w);
}
for(int i = ; i < n; i++)//第三组边 i+1->i 权值0
addedge(i + , i, );
if(Bellman())
{
cout<<"-1"<<endl;
}
else
{
if(d[n] == INF)cout<<"-2"<<endl;
else cout<<d[n]<<endl;
}
/*for(int i = 1; i <= n; i++)
{
cout<<i<<":::";
for(int j = 0; j < G[i].size(); j++)cout<<G[i][j].v<<"-"<<G[i][j].w<<" ";
cout<<endl;
}*/
}
POJ-3169 Layout---差分约束系统+Bellman的更多相关文章
- POJ 3169 Layout 差分约束系统
介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...
- PKU 3169 Layout(差分约束系统+Bellman Ford)
题目大意:原题链接 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相同的 ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- poj 3169 Layout 差分约束模板题
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6415 Accepted: 3098 Descriptio ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout (差分约束)
题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- poj 3169 Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168 Descriptio ...
随机推荐
- 9.FileWriter 和 BufferWriter
FileWriter 和 BufferWriter的使用场景 http://www.cnblogs.com/xjyh/p/4529809.html
- Redis学习笔记(三)常用命令整理
Redis 常用命令 1.DEL key 删除key2.EXISTS key 检查key是否存在3.KEYS * 查看所有的key4.EXPIRE key seconds 设置key的过期时间5.TT ...
- cocos对lua代码加密
1.0 cocos luacompile 用法 我用的普通的cocos2d lua,没用quick,quick好像可以对整个资源包括图像和音频都加密,打包成zip.但我没用quick.看了下luaco ...
- DB2开发系列之四——触发器
1.触发器类型 1)BEFORE 触发器:在对表插入或更新之前执行该触发器,允许使用CALL 和 SIGNAL SQL 语句: 2)BEFORE DELETE 触发器:在删除操作之前执行该触发器: 3 ...
- mqtt异步publish方法
Python基于mqtt异步编程主要用到asyncio及第三方库hbmqtt,这里主要介绍mqtt的异步发布及遇到的一些问题. hbmqtt安装很简单,pip hbmqtt install. mqtt ...
- 关于yaml语言
yaml语言广泛用于书写配置文件. 主要特点如下: 1.使用缩进表示层级关系,缩进使用空格键(非Tab键) 2.缩进的空格数目不要求,只要相同层级的元素左侧对其即可 3.#之后的内容为注释 4.yam ...
- python 信号处理
linux开发中,通常会在进程中设置专门的信号处理方法,比如经常使用的CTRL+C,KILL等信号.如果你熟悉liunx编程,那么python等信号处理方法对你来说就很简单,下面的内容将主要介绍pyt ...
- C语言程序设计(基础)- 第3周作业
一.PTA编程题目 完成PTA第三周作业中4个题目: 1.7-9 A乘以B 要求:输入的两个整数:A是你学号前两位数字,B是你学号后两位数字 2.7-10 求整数均值 要求:输入的整数是:你的身高.体 ...
- 每日冲刺报告——Day1(Java-Team)
第一天报告(11.2 周四) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://git ...
- 2017-2018-1 我爱学Java 第八周 作业
团队六七周作业 团队分工 UML图 工具选择 小编(金立清)有话说 参考资料 团队分工 返回目录 UML图 用例图 类图 活动图 状态图 返回目录 工具选择 ProcessOn - 免费在线作图,实时 ...