重拾Python(5):数据读取
本文主要对Python如何读取结构化数据进行总结梳理,涵盖从文本文件,尤其是excel文件(用于离线数据探索分析),以及结构化数据库(以Mysql为例)中读取数据等内容。
约定:
import numpy as np
import pandas as pd
1、从文本文件中读取
(1)使用Python标准库中的read、readline、readlines方法读取
a. 一般流程:
step1: 通过open方法创建一个文件对象
setp2: 通过read、readline、readlines方法读取文件内容
step3: 通过close方法关闭文件对象
b. 区别:
示例:test.txt

read方法:读取全部数据,结果为一个字符串(所有行合并为一个字符串)
#打开文件
f = open('/labcenter/python/pandas/test.txt')
#使用read方法读取文件
data1 = f.read()
print data1
type(data1)
#关闭文件
f.close()
结果:
col1 col2 col3
101 20 0.68
102 30 0.79
103 50 0.72
104 60 0.64
105 70 0.55
str
readline方法:读取一行数据,结果为一个字符串,需要seek\next等指针操作方法配合实现所有记录的遍历。
#打开文件
f = open('/labcenter/python/pandas/test.txt')
#使用readline方法读取文件
data2 = f.readline()
print data2
type(data2)
#关闭文件
f.close()
结果:
col1 col2 col3
str
readlines方法:读取全部数据,结构为一个列表(一行为列表中的一个元素)
#打开文件
f = open('/labcenter/python/pandas/test.txt')
#使用readlines方法读取文件
data3 = f.readlines()
print data3
type(data3)
for line in data3:
print line
#关闭文件
f.close()
结果:
['col1 col2 col3\r\n', '101 20 0.68\r\n', '102 30 0.79\r\n', '103 50 0.72\r\n', '104 60 0.64\r\n', '105 70 0.55']
list
col1 col2 col3
101 20 0.68
102 30 0.79
103 50 0.72
104 60 0.64
105 70 0.55
c. 支持文件范围:
txt\csv\tsv及所有以固定分隔符分隔的文本文件。
(2)使用Numpy库中的loadtxt、load、fromfile方法读取
a. loadtxt方法
从txt文本文件中读取,返回一个数组。
np.loadtxt('/labcenter/python/pandas/test.txt',skiprows=1)
Out[413]:
array([[ 101. , 20. , 0.68],
[ 102. , 30. , 0.79],
[ 103. , 50. , 0.72],
[ 104. , 60. , 0.64],
[ 105. , 70. , 0.55]])
b. load方法
读取Numpy专用的二进制数据文件,该文件通常基于Numpy的save或savez方法生成。
write = np.array([[1,2,3,4],[5,6,7,8]])
np.save('output',write)
data = np.load('output.npy')
print data
type(data)
结果:
[[1 2 3 4]
[5 6 7 8]]
numpy.ndarray
c. fromfile方法
读取简单的文本文件和二进制文件,该文件通常基于Numpy的tofile方法生成。
write = np.array([[1,2,3,4],[5,6,7,8]])
write.tofile('output')
data = np.fromfile('output',dtype='float32')
print data
type(data)
结果:
[ 1.40129846e-45 0.00000000e+00 2.80259693e-45 ..., 0.00000000e+00
1.12103877e-44 0.00000000e+00]
numpy.ndarray
(3)使用Pandas库中的read_csv、read_table、read_excel等方法读取
a. read_csv方法
读取csv文件,返回一个DataFrame对象或TextParser对象。
示例:
test.csv

data = pd.read_csv('/labcenter/python/pandas/test.csv')
print data
type(data)
结果:
col1 col2 col3
0 101 20 0.68
1 102 30 0.79
2 103 50 0.72
3 104 60 0.64
4 105 70 0.55
pandas.core.frame.DataFrame
b. read_table方法
读取通用分隔符分隔的文本文件,返回一个DataFrame对象或TextParser对象。
data = pd.read_table('/labcenter/python/pandas/test.csv',sep=',')
print data
type(data)
结果:
col1 col2 col3
0 101 20 0.68
1 102 30 0.79
2 103 50 0.72
3 104 60 0.64
4 105 70 0.55
pandas.core.frame.DataFrame
c. read_excel方法
读取excel文件,返回一个DataFrame对象或TextParser对象。
示例:
test.xlsx

data = pd.read_excel('/labcenter/python/pandas/test.xlsx')
print data
type(data)
结果:
col1 col2 col3
0 101 21 22.6
1 102 31 31.2
2 103 41 32.7
3 104 51 28.2
4 105 61 18.9
pandas.core.frame.DataFrame
d. 其他方法
read_sql方法:读取sql请求或者数据库中的表。
read_json方法:读取json文件。
(4)如何选择?
a. 选取自己最熟悉的方法。
b. 根据场景选择:
① 对纯文本、非结构化的数据:标准库的三种方法
② 对结构化、数值型,并且要用于矩阵计算、数据建模的:Numpy的loadtxt方法
③ 对于二进制数据:Numpy的load和fromfile方法
④ 对于结构化的数据,并且要用于数据探索分析的:Pandas方法
2、从Excel文件中读取
excel往往是在进行离线数据探索分析时提供的数据文件格式,因此这里单独拿出来多总结一下。
(1)使用Pandas库的read_excel方法
见上文1.3.c内容。
(2)使用其他第三方库
以xlrd库为例, xlrd模块实现对excel文件内容读取。
import xlrd
#打开一个excel文件
xlsx=xlrd.open_workbook('/labcenter/python/pandas/test.xlsx')
#读取sheet清单
sheets=xlsx.sheet_names()
sheets
#获取一个sheet数据
sheet1=xlsx.sheets()[0]
#获取指定sheet的名称
sheet1.name
#获取指定sheet的行数
sheet1.nrows
#获取指定sheet的列数
sheet1.ncols
#获取指定sheet某行的数据
sheet1.row_values(1)
#获取指定sheet某列的数据
sheet1.col_values(1)
#获取指定sheet某单元格的数据
sheet1.row(1)[2].value
sheet1.cell_value(1,2)
#逐行获取指定sheet的数据
for i in range(sheet1.nrows):
print sheet1.row_values(i)
结果:
[u'Sheet1', u'Sheet2']
u'Sheet1'
6
3
[101.0, 21.0, 22.6]
[u'col2', 21.0, 31.0, 41.0, 51.0, 61.0]
22.6
22.6
[u'col1', u'col2', u'col3']
[101.0, 21.0, 22.6]
[102.0, 31.0, 31.2]
[103.0, 41.0, 32.7]
[104.0, 51.0, 28.2]
[105.0, 61.0, 18.9]
##3、从结构化数据库中读取
根据数据库选择相应的库,如:mysql数据库使用MySQLdb库,oracle数据库使用cx_Oracle库,teradata数据库使用teradata库,等等。
一般流程:
step1: 建立数据库连接
step2: cursor方法获取游标
step3: execute方法执行SQL语句
step4: fetchall方法获取返回的记录
step5: close方法关闭游标
step6: close方法断开数据库连接
示例:
import MySQLdb
#建立数据库连接
conn = MySQLdb.connect("localhost", "root", "root", "testdb", charset='utf8')
#获取游标
cursor = conn.cursor()
#执行SQL语句
cursor.execute("select * from mytab1;")
#获取返回的记录
results = cursor.fetchall()
#逐行打印
for result in results:
print result
#关闭游标
cursor.close()
#断开数据库连接
conn.close()
结果:
(1L, u'aaa')
(2L, u'bbb')
(3L, u'ccc')
(4L, u'ddd')
(5L, u'eee')
可通过命令pip install MySql-Python安装库MySQLdb。
4.参考与感谢
[1] Python数据分析与数据化运营
重拾Python(5):数据读取的更多相关文章
- 重拾python所要知道的一些主干知识点
前言:因为有一段时间没有用python了,最近需要用到,只能回头过去看B站视频补一补,因为语言都是相通的,而且一些细节都可以去查表解决,所以呢,我们只需要知道一些python与其他语言的不同和常见的优 ...
- 重拾python
前一段碰到几次关于日期计算的题:给出一个日期,计算下一天的日期.虽然不限语言,可是我就C/C++还算熟悉,别的都是刚了解皮毛,根本不会用现成的库啊,无奈啊...只好用c语言一点点实现了,当时真是无比怀 ...
- 重拾Python(3):Pandas之Series对象的使用
Pandas是Python下最强大的数据分析和探索库,是基于Numpy库构建的,支持类似SQL的结构化数据的增.删.查.改,具有丰富的数据处理函数.Pandas有两大数据结构:Series和DataF ...
- python + Excel数据读取(更新)
data.xlsx 数据如下: import xlrd#1.读取Excel数据# table = xlrd.open_workbook("data.xlsx","r&qu ...
- 重拾Python(2):如何安装第三方库(Windows)
使用python进行数据分析或者数据处理时,往往需要使用一些库,而使用库之前必须安装它.Anaconda内置了很多常用的第三方库,可以满足绝大部分需求,比如numpy.pandas.matplotli ...
- 重拾Python(1):使用Anaconda搭建Python开发环境(Windows7)
1.为什么选择Anaconda? Anaconda解决了Python使用痛点. Python好用但是令人头疼的就是库管理与Python不同版本的问题,特别是Windows环境下. 2.什么是Anaco ...
- 重拾Python(4):Pandas之DataFrame对象的使用
Pandas有两大数据结构:Series和DataFrame,之前已对Series对象进行了介绍(链接),本文主要对DataFrame对象的常用用法进行总结梳理. 约定: import pandas ...
- Python: 文件操作与数据读取
文件及目录操作 python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块,主要用到的几个函数是, import os 返回指定目录下的所有文件和目录名: os.listdir() 重命名: ...
- 【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). ...
随机推荐
- 移动端Web资源整合
meta基础知识 H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 <meta name="viewport" content="width=device-wid ...
- New UWP Community Toolkit - RadialGauge
概述 New UWP Community Toolkit V2.2.0 的版本发布日志中提到了 RadialGauge 的调整,本篇我们结合代码详细讲解 RadialGauge 的实现. Radi ...
- C语言博客作业—一二维数组
一.PTA实验作业 题目1:7-2 求整数序列中出现次数最多的数 1. 本题PTA提交列表 2. 设计思路 Begin 输入整数个数N 定义数组a[N] 输入数组a for(i 0 to N-1){/ ...
- Software Engineering-HW1
title: Software Engineering-HW1 date: 2017-09-13 15:41:13 tags: HW --- 阅读随笔 在<徐宥:掉进读书的兔子洞>里面, ...
- 20155306 2006-2007-2 《Java程序设计》第3周学习总结
20155306 2006-2007-2 <Java程序设计>第3周学习总结 教材学习内容总结 第四章 认识对象 4.1 类与对象 定义类 1.先在程序中定义类: Clothes{ Str ...
- JAVA和Android的回调机制
本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/17483273),请尊重他人的辛勤劳动成果,谢谢 以 前不理解什么叫回 ...
- git cherry-pick 整理
git cherry-pick可以选择某一个分支中的一个或几个commit(s)来进行操作.例如,假设我们有个稳定版本的分支,叫v2.0,另外还有个开发版本的分支v3.0,我们不能直接把两个分支合并, ...
- SpringMVC源码情操陶冶#task-executor解析器
承接Spring源码情操陶冶-自定义节点的解析.线程池是jdk的一个很重要的概念,在很多的场景都会应用到,多用于处理多任务的并发处理,此处借由spring整合jdk的cocurrent包的方式来进行深 ...
- apache的重写规则
RewriteEngine OnRewriteCond %{REQUEST_FILENAME} .*\.(jpg|jpeg|gif|png) [NC]RewriteRule .* http://i8. ...
- Python内置函数(39)——help
英文文档: help([object]) Invoke the built-in help system. (This function is intended for interactive use ...