【问题描述】

【输入格式】

【输出格式】

【样例输入】

2 1 10 13

3

【样例输出】

12

【样例说明】

【数据范围】

先容斥,考虑枚举哪些条件强制不满足,即直接选出b[i]+1件宝具

假设强制不满足的条件的b[i]+1的和为sum

那么剩下的就是x=m-sum个宝具

我们考虑隔板法,即C(n-1,x+n-1)=C(x,x+n-1)

但是可以小于m,即小于x

那么C(0,n-1)+C(1,n)+C(2,n+1)....+C(x,x+n-1)

根据C(i,j)=C(i-1,j-1)+C(i-1,j)

所以就变成了C(x,x+n)

然后lucas

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
lol Mod,n,t,m,b[];
lol fac[],ifac[],inv[],ans;
lol lucas(lol x,lol y)
{
if (x<||y<||x>y) return ;
if (x==) return ;
lol xx=x%Mod,yy=y%Mod;
if (xx>yy) return ;
lol s=fac[yy]*ifac[xx]%Mod*ifac[yy-xx]%Mod;
return s*lucas(x/Mod,y/Mod)%Mod;
}
void dfs(lol x,lol sum,lol cnt)
{
if (sum>m) return;
if (x>t)
{
if (cnt&)
ans-=lucas(n,m-sum+n),ans=(ans+Mod)%Mod;
else ans+=lucas(n,m-sum+n),ans%=Mod;
return;
}
dfs(x+,sum+b[x]+,cnt+);
dfs(x+,sum,cnt);
}
int main()
{lol i;
cin>>n>>t>>m>>Mod;
fac[]=;inv[]=;inv[]=;ifac[]=;
for (i=;i<Mod;i++)
fac[i]=fac[i-]*i%Mod;
for (i=;i<Mod;i++)
inv[i]=(Mod-Mod/i)*inv[Mod%i]%Mod;
ifac[]=inv[];
for (i=;i<Mod;i++)
ifac[i]=ifac[i-]*inv[i]%Mod;
for (i=;i<=t;i++)
scanf("%lld",&b[i]);
dfs(,,);
cout<<ans<<endl;
}

bzoj1272 Gate Of Babylon的更多相关文章

  1. bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)

    Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...

  2. BZOJ1272: [BeiJingWc2008]Gate Of Babylon

    题解: 多重集合的组合数?还是0-m?有些元素有个数限制? 多重集合的组合数可以插板法,0-m直接利用组合数的公式一遍求出来,个数限制注意到只有15个,那我们就暴力容斥了 AC了真舒畅.. 注意开lo ...

  3. 【BZOJ1272】Gate Of Babylon [Lucas][组合数][逆元]

    Gate Of Babylon Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description Input ...

  4. Gate Of Babylon bzoj 1272

    Gate Of Babylon (1s 128MB) babylon [问题描述] [输入格式] [输出格式] [样例输入] 2 1 10 13 3 [样例输出] 12 [样例说明] [数据范围] 题 ...

  5. 【BZOJ】【1272】【BeiJingWC2008】Gate of Babylon

    组合数学+容斥原理 Orz zyf-zyf 多重集组合数0.0还带个数限制?  ——>  <组合数学>第6章  6.2带重复的组合 组合数还要模P 0.0? ——> Lucas ...

  6. 【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)

    1272: [BeiJingWc2008]Gate Of Babylon Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 254  Solved: 12 ...

  7. bzoj 1272: [BeiJingWc2008]Gate Of Babylon

    Description Solution 如果没有限制,答案就是 \(\sum_{i=0}^{m}C(n+i-1,i)\) 表示枚举每一次取的个数,且不超过 \(m\),方案数为可重组合 发现这个东西 ...

  8. ●BZOJ 1272 [BeiJingWc2008]Gate Of Babylon

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1272 题解: 容斥,Lucas定理本题的容斥考虑类似 [BZOJ 1042 [HAOI200 ...

  9. Gate Of Babylon(bzoj 1272)

    Description Input Output Sample Input Sample Output 12 HINT /* 容斥+lucas+乘法逆元 首先,看到有限制的只有15个,因此可以用容斥原 ...

随机推荐

  1. beta冲刺总结

    前言: 经过一周的努力,对alpha版本进行不断的更新,得到了beta版本. 主要成员介绍: 成员 性格 优点 缺点 主要工作 黄紫仪 努力奋斗型 努力奋斗,爱学习 爱吐槽 功能点修改和部分界面修改, ...

  2. 关于5303狄惟佳同学的myod程序设计的补充实现

    关于5303狄惟佳同学的myod程序设计的补充实现 原版代码实现的局限 原版代码主函数 int main(int argc,char *argv[]) { if(strcmp(argv[1], &qu ...

  3. Linux学习--线程控制

    关于线程控制,主要就是几个模块,我们一个一个消灭.消化: 一.线程创建: 1.先来看看在Linux环境下的线程创建函数: 分析:意思很明显: 1.函数名是 pthread_create  : 2.功能 ...

  4. sys模块的使用

    import sys,time ''' if sys.argv[1]=='sleepy': print('nongsi') else: print('....')''' #进度条 for i in r ...

  5. 【iOS】swift-Binary operator '|' cannot be applied to two UIViewAutoresizing operands

    let view = UIView(frame: CGRect(x: 0, y: 0, width: 320, height: 568)) addSubview(view) view.autoresi ...

  6. idea 导eclipse项目

    https://www.cnblogs.com/xiaoBlog2016/archive/2017/05/08/6825014.html

  7. [ZLXOI2015]殉国

    2057. [ZLXOI2015]殉国 http://cogs.pro/cogs/problem/problem.php?pid=2057 ★☆   输入文件:BlackHawk.in   输出文件: ...

  8. JAVA_SE基础——14.循环结构语句

    建议有些基础的同学阅读,0基础可能会有些困难(最好看正文配合基础课本的例子) 所谓循环语句主要就是在满足条件的情况下反复执行某一个操作.Java提供了3种常用的循环语句,分别为for循环语句.whil ...

  9. machine learning 之 logistic regression

    整理自Adrew Ng 的 machine learning课程week3 目录: 二分类问题 模型表示 decision boundary 损失函数 多分类问题 过拟合问题和正则化 什么是过拟合 如 ...

  10. SpringBoot应用的启动方式

    一:IDE 运行Application这个类的main方法 二:在SpringBoot的应用的根目录下运行mvn spring-boot:run 三:使用mvn install 生成jar后运行 先到 ...