Perceptron Learning Algorithm
感知器算法,
本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二。
算法确定后,根据W取值的不同形成不同的h,构成假设集合H。
如2维感知器算法,根据w0,w1,w2的不同取值,构成了不同的h,这些h最终构成H。注意为了方便表示,将阈值的相反数记为w0,对应的数据点增加一维x0,恒为1。
而算法就是根据给定数据集D从H中选出与目标模式f最为相似的g。
更新规则/学习过程,
遍历数据集合,若遇到异常点,即由当前W更新为新的W,
若异常点的y值为+1,表明X与当前W的内积值为负,角度过大,更新后角度将会变小;若异常点的y值为-1,表明X与当前W的内积值为正,角度过小,更新后角度将会变大。
更新W的本质其实是从H中选出与f更为相似的h的过程。
注意,更新后不能保证异常点变为正常点,只是异常的程度小了点。
何时停止更新?
在当前W的情况下,遍历D中所有数据点,无异常点时停止更新。
一定能够保证能停止更新吗?即在当前W下无法找到一个新的W使得对应的h与f更为接近?
只要数据线性可分就能!
Wf与Wt的内积值随着更新次数的上升而增大,同时,Wt的模也在增大,
不过,内积增大的程度大于模增大的程度,保证了随着更新次数的上升,Wt与Wf越来越接近。
PLA的优缺点:
优点:简单、快速、任意维度;
缺点:假设数据线性可分,然而我们并不知道f,也就不知道是否可分,再来,要是知道线性可分,W也已经知道了,没有必要再用PLA了;
经过多少次更新才能收敛也不知道,如上证明,T与Wf有关,然而我们不知道Wf
Pocket Algorithm
若数据线性不可分,使用PA,
即既然异常点无法避免,PA在H中找到一个使得异常点数目最小的h作为g。
注:O(nk)为多项式型时间复杂度,O(kn)/O(n!)/O(>n!)/...为指数型时间复杂度。
问题分为可解问题和不可解问题,多项式型时间复杂度的可解问题为P问题,验证时为多项式型时间复杂度的为NP问题,能否可解未知。
P问题肯定是NP问题,NP问题不一定是P问题。
PA,初始化W,放到口袋里,若遇到异常点,使用PLA的更新规则得到新的W,遍历数据集,若是新的W下异常点的数目更少,则用新的W替换旧的W放到口袋中,否则不替换。继续遍历数据集,得到下一个异常点,重复上述过程至足够迭代次数。口袋里放的永远是目前使得异常点最少的W。
PA不影响PLA的正常运行,只是从历史W中挑出使得样本内分类错误最少的W作为最终返回值。
如果数据集是线性可分的,PLA和PA都能够实现D内无异常点的分类,
但是PA的时间会长于PLA,因为多了比较两个不同的W下遍历一轮数据所得异常点数目多少的过程。
 

机器学习基石:02 Learning to Answer Yes/No的更多相关文章

  1. 机器学习基石 2 Learning to Answer Yes/No

    机器学习基石 2 Learning to Answer Yes/No Perceptron Hypothesis Set 对于一个线性可分的二分类问题,我们可以采用感知器 (Perceptron)这种 ...

  2. 机器学习基石笔记:02 Learning to Answer Yes/No、PLA、PA

    原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即 ...

  3. 02 Learning to Answer Yes/No

    Perceptron Learning Algorithm 感知器算法, 本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二. 算法确定后, ...

  4. 机器学习基石 4 Feasibility of Learning

    机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...

  5. 机器学习基石 3 Types of Learning

    机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label L ...

  6. 机器学习基石 1 The Learning Problem

    机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据 ...

  7. 機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

    大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解 ...

  8. 机器学习基石(台湾大学 林轩田),Lecture 1: The Learning Problem

    课程的讲授从logo出发,logo由四个图案拼接而成,两个大的和两个小的.比较小的两个下一次课程就可能会解释到它们的意思,两个大的可能到课程后期才会解释到它们的意思(提示:红色代表使用机器学习危险,蓝 ...

  9. 机器学习基石第三讲:types of learning

    博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕机器学习基石的第三讲.这一讲主要介绍了机器学习的分类.对何种问题应该使用何种 ...

随机推荐

  1. 记录python接口自动化测试--主函数(第六目)

    把操作excel的方法封装好后,就可以用准备好的接口用例来循环遍历了 我的接口测试用例如下 主函数代码: run_handle_excel.py# coding:utf-8 from base.run ...

  2. 刚入大学B. http://mp.weixin.qq.com/s/ORpKfX8HOQEJOYfwvIhRew

    自己对计算机还是比较感兴趣的,经过不断的努力,我相信我可以在这一专业中显露头角,我会努力向博主学习.理想的大学是自由,快乐,可以学到很多知识的地方,未来我想在lt行业进行软件开发等项目,为了梦想我会不 ...

  3. 算法第四版 coursera公开课 普林斯顿算法 ⅠⅡ部分 Robert Sedgewick主讲《Algorithms》

    这是我在网上找到的资源,下载之后上传到我的百度网盘了. 包含两部分:1:算法视频的种子 2:字幕 下载之后,请用迅雷播放器打开,因为迅雷可以直接在线搜索字幕. 如果以下链接失效,请在下边留言,我再更新 ...

  4. 翻译:CREATE FUNCTION语句(已提交到MariaDB官方手册)

    本文为mariadb官方手册:CREATE FUNCTION的译文. 原文:https://mariadb.com/kb/en/library/create-function/我提交到MariaDB官 ...

  5. window.showModalDialog

    //新版本谷歌没有window.showModalDialog,创建一个window.openif(window.showModalDialog == undefined){  window.show ...

  6. 申请JetBrains学生免费注册码

    1.申请.edu.*后缀的邮箱 从某个知乎用户上面得到了两个可以申请的后缀edu的邮箱 上海交通大学校友统一身份认证:https://register.alumni.sjtu.edu.cn/alumn ...

  7. JAVA_SE基础——54.异常

    异常的体系: ----------| Throwable  所以异常或者错误类的超类 --------------|Error  错误   错误一般是用于jvm或者是硬件引发的问题,所以我们一般不会通 ...

  8. 【Learning】 多项式的相关计算

    约定的记号 对于一个多项式\(A(x)\),若其最高次系数不为零的项是\(x^k\),则该多项式的次数为\(k\). 记为\(deg(A)=k\). 对于\(x\in(k,+ \infty)\),称\ ...

  9. 【JavaScript中typeof、toString、instanceof、constructor与in】

    JavaScript中typeof.toString.instanceof.constructor与in JavaScript 是一种弱类型或者说动态语言.这意味着你不用提前声明变量的类型,在程序运行 ...

  10. ELK学习总结(2-2)单模式CRUD操作

    ------------------------------------------------------ 1.查看索引信息 请求命令: GET /library/_settings GET /li ...