【BZOJ2809】【APIO2012】Dispatching(左偏树)
题面
Description
在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算M,输出在预算内满足上述要求时顾客满意度的最大值。
1 ≤N ≤ 100,000 忍者的个数;
1 ≤M ≤ 1,000,000,000 薪水总预算;
0 ≤Bi < i 忍者的上级的编号;
1 ≤Ci ≤ M 忍者的薪水;
1 ≤Li ≤ 1,000,000,000 忍者的领导力水平。
Input
从标准输入读入数据。
第一行包含两个整数 N和 M,其中 N表示忍者的个数,M表示薪水的总预算。
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0,并且每一个忍者的老板的编号一定小于自己的编号 Bi < i。
Output
输出一个数,表示在预算内顾客的满意度的最大值。
Sample Input
5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
6
HINT
如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算4。因为派遣了2个忍者并且管理者的领导力为3,用户的满意度为6,是可以得到的用户满意度的最大值。
题解
首先很显然的一个贪心:
选定了管理者之后,能够选择的最多的忍者一定是当前的这棵子树上,薪水最少的那些忍者。
另外一个很显然的东西,每次将答案逐个向上合并,因为要继续保证贪心,因此要将子树上的所有的忍者中薪水最大的一个个减掉再继续尝试。
而这个就是一个堆,因此使用左偏树,逐个向上合并即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define MAX 110000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Node
{
ll v;
int f;
int l,r;
int dis;
}t[MAX];
ll sum[MAX],V[MAX];
int tot[MAX],N,M,rt[MAX];
ll ans;
int root;
inline int Merge(int r1,int r2)
{
if(t[r1].v==-1)r1=0;
if(t[r2].v==-1)r2=0;
if(r1==0||r2==0)return r1+r2;
if(t[r1].v<t[r2].v||(t[r1].v==t[r2].v&&r1>r2))swap(r1,r2);
t[r1].r=Merge(t[r1].r,r2);
t[t[r1].r].f=r1;
if(t[t[r1].l].dis<t[t[r1].r].dis)swap(t[r1].l,t[r1].r);
t[r1].dis=t[t[r1].r].dis+1;
return r1;
}
inline int pop(int r)
{
t[t[r].l].f=t[t[r].r].f=0;
t[r].v=-1;
return Merge(t[r].l,t[r].r);
}
struct Line
{
int v,next;
}e[MAX];
int cnt=1,h[MAX];
inline void Add(int u,int v)
{
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
void DFS(int u)
{
sum[u]=t[u].v;tot[u]=1;
for(int i=h[u];i;i=e[i].next)
{
DFS(e[i].v);
sum[u]+=sum[e[i].v];
tot[u]+=tot[e[i].v];
}
for(int i=h[u];i;i=e[i].next)
rt[u]=Merge(rt[u],rt[e[i].v]);
while(sum[u]>M&&tot[u])
{
tot[u]--;
sum[u]-=t[rt[u]].v;
rt[u]=pop(rt[u]);
}
ans=max(ans,tot[u]*V[u]);
}
int main()
{
N=read();M=read();
for(int i=1;i<=N;++i)
{
int ff=read();
t[i].v=read();
V[i]=read();
Add(ff,i);
if(ff==0)root=i;
rt[i]=i;
}
DFS(root);
printf("%lld\n",ans);
return 0;
}
【BZOJ2809】【APIO2012】Dispatching(左偏树)的更多相关文章
- bzoj2809 [Apio2012]dispatching(左偏树)
[Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...
- bzoj2809 [Apio2012]dispatching——左偏树(可并堆)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...
- 【bzoj2809】[Apio2012]dispatching 左偏树
2016-05-31 15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的- ...
- [Apio2012]dispatching 左偏树
题目描述 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增 ...
- [Apio2012]dispatching 左偏树做法
http://codevs.cn/problem/1763/ 维护子树大根堆,当子树薪水和>m时,删除最贵的点 #include<cstdio> #include<iostre ...
- APIO2012 派遣dispatching | 左偏树
题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...
- BZOJ2809 dispatching(左偏树)
在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增强忍者们的 ...
- [APIO2012]派遣 左偏树
P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...
- 洛谷P1552 [APIO2012] 派遣 [左偏树,树形DP]
题目传送门 忍者 Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都 ...
- 【bzoj2809】派遣 (左偏树)
传送门 题目分析 每个节点都是一颗(大根堆)左偏树,先按bfs序存入数组,然后倒着从底层开始:如果当前节点的子树sum > m 那么就把根节点删去,然后统计更新答案,并将这棵树和父节点合并. c ...
随机推荐
- yii2 源码分析 model类分析 (五)
模型类是数据模型的基类.此类继承了组件类,实现了3个接口 先介绍一下模型类前面的大量注释说了什么: * 模型类是数据模型的基类.此类继承了组件类,实现了3个接口 * 实现了IteratorAggreg ...
- Java堆栈内存总结
在Java中,主要存在四块内存空间,除了保存static类型属性的全局数据区,以及保存虽有方法定义的全局代码区之外,程序员更多的在乎内存中的另外两种区域--对象的生存空间堆(heap)和方法调用及变量 ...
- Docker可视化管理工具Shipyard安装与配置
Shipyard简介 Shipyard是一个集成管理docker容器.镜像.Registries的系统,它具有以下特点: 1.支持多节点的集成管理 2.可动态加载节点 3.可托管node下的容器 镜像 ...
- 从Vue.js源码角度再看数据绑定
写在前面 因为对Vue.js很感兴趣,而且平时工作的技术栈也是Vue.js,这几个月花了些时间研究学习了一下Vue.js源码,并做了总结与输出.文章的原地址:https://github.com/an ...
- mvc get image 500
mvc中get图片时报500错误 很奇怪,突然变500错误了,一番查找之后发现原来是因为mimeType重复定义的原因,吐血.. http://stackoverflow.com/questions/ ...
- 字典树trie
字典树经常用于单词搜索,现在网络引擎中也应用了trie树: public class Trie{ private int SIZE = 26; private TrieNode root; Trie( ...
- uva10976
数学题. 1. 因为 1/k = 1/x +1/y 所以 1/k > 1/y 那么 y > k 2 . 因为 x >= y 所以 1/k - 1/y <= 1/y 那么 y & ...
- flask项目开发中,遇到http 413错误
在flask项目中,上传文件时后台报http 413 Request Entity Too Large 请求体太大错误! 解决的2种方法: 1.在flask配置中设置 MAX_CONTENT_LENG ...
- Ironic中pxe driver和agent driver的区别
历史问题: 以pxe_ipmitool 和agent_ipmitool为例,看起来似乎前者不使用ironic-python-agent,后者使用,但是实际上两者都使用ironic-python-age ...
- WireShark过滤解析HTTP/TCP
过滤器的使用: 可利用“&&”(表示“与”)和“||”(表示“或”)来组合使用多个限制规则, 比如“(http && ip.dst == 64.233.189.104) ...