51Nod 1196 字符串的数量
用N个不同的字符(编号1 - N),组成一个字符串,有如下要求:
(1) 对于编号为i的字符,如果2 * i > n,则该字符可以作为结尾字符。如果不作为结尾字符而是中间的字符,则该字符后面可以接任意字符。
(2) 对于编号为i的字符,如果2 * i <= n,则该字符不可以作为结尾字符。作为中间字符,那么后面接的字符编号一定要 >= 2 * i。
问有多少长度为M且符合条件的字符串,由于数据很大,只需要输出该数Mod 10^9 + 7的结果。
例如:N = 2,M = 3。则abb, bab, bbb是符合条件的字符串,剩下的均为不符合条件的字符串。
解题报告:
用时:1h30min,1WA
这题参考了题解定义的状态,\(f[i]\)表示长度为i的合法字符串方案数,\(g[i]\)表示长度为i的字符链的方案数,字符链表示以\(2*i>n\)的字符为结尾的字符串,其中\(2*i>n\)的字符有且仅有一个,这样可以保证不重复计算,容易发现转移:
\(f[i]=\sum_{j=1}^{n}f[i-j]*g[j]\)
我们会发现\(g[j]\)最多长度为\(logn\),所以可以直接暴力转移,复杂度\(O(nlogn)\)
以下是乱搞:
但是对于\(g[i]\)我们也需要预处理出:
定义\(p[i][j]\)为长度为\(i\)的以j结尾的字符的方案数,显然:
\(p[i][j]=\sum_{k=1}^{j/2}p[i-1][k]\)
这里我们可以记前缀和优化,递推依然是\(O(nlogn)\)
\(g[i]=\sum_{j=1}^{n/2}p[i][j]\)
均摊复杂度\(O(nlogn)\)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int mod=1e9+7,N=1e6+5;
int n,m,maxlen,p[22][N],sum[N];ll g[N],f[N];
void work()
{
scanf("%d%d",&n,&m);
maxlen=log(m)/log(2)+2;
sum[0]=1;
for(int i=1;i<=maxlen;i++){
if(i!=1)sum[0]=0;
for(int j=1;j<=n;j++){
sum[j]=sum[j-1]+p[i-1][j];
if(sum[j]>=mod)sum[j]-=mod;
}
for(int j=1;j<=n;j++){
p[i][j]+=sum[j/2];
if(p[i][j]>=mod)p[i][j]-=mod;
}
}
for(int i=1;i<=maxlen;i++){
for(int j=n/2+1;j<=n;j++)
{
g[i]+=p[i][j];
if(g[i]>=mod)g[i]-=mod;
}
}
f[0]=1;
for(int i=1;i<=m;i++){
for(int j=1;j<=maxlen && j<=i;j++)
f[i]+=g[j]*f[i-j],f[i]%=mod;
}
printf("%lld\n",f[m]);
}
int main()
{
work();
return 0;
}
51Nod 1196 字符串的数量的更多相关文章
- 51nod 1196 字符串的数量(DP+数论?)
这题好像是神题...V1 V2 V3分别涵盖了51nod 5级算法题 6级算法题 难题 讨论区的曹鹏神牛好强啊...一种做法切了V1 V2 V3,而且做法是一步一步优化的 还没去看优化的部分,未优化已 ...
- 51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)
接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 or ...
- @51nod - 1196/1197/1198@ 字符串的数量
目录 @description@ @solution@ @part - 1@ @part - 2@ @part - 3@ @accepted code@ @details@ @description@ ...
- 51nod1196 字符串的数量
用N个不同的字符(编号1 - N),组成一个字符串,有如下要求:(1) 对于编号为i的字符,如果2 * i > n,则该字符可以作为结尾字符.如果不作为结尾字符而是中间的字符,则该字符后面可以接 ...
- [51nod1197]字符串的数量 V2
用N个不同的字符(编号1 - N),组成一个字符串,有如下要求: (1) 对于编号为i的字符,如果2 * i > n,则该字符可以作为结尾字符.如果不作为结尾字符而是中间的字符,则该字符后面可以 ...
- 51nod 1277 字符串中的最大值
题目链接 51nod 1277 字符串中的最大值 题解 对于单串,考虑多串的fail树,发现next数组的关系形成树形结构 建出next树,对于每一个前缀,他出现的次数就是他子树的大小 代码 #inc ...
- 用map来统计数组中各个字符串的数量
1.背景 想要统计这一个字符串数组中每一个非重复字符串的数量,使用map来保存其key和value.这个需求在实际开发中经常使用到,我以前总是新建一个空数组来记录不重复字符串,并使用计数器计数,效率低 ...
- 51nod【1196】字符串的数量
超级神题! 有n种字符,若此种字符的编号( \(1\) ~ \(n\)),\(i*2>n\),则他后面可接任意字符.若不是,则他后面接的字符编号至少要是他的两倍. 问长度为m的字符串的个数. 这 ...
- 51Nod 1277 字符串中的最大值(KMP,裸题)
1277 字符串中的最大值 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如: ...
随机推荐
- 201621123043《java程序设计》第4周学习总结
1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:继承.覆盖.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需要出现过多的字. 1.3 可选:使用 ...
- 十、Python练习----基础搭建飞机大战
只是简单的学习了pygame,实现飞机的摧毁还需要多张图片的切换,和sprite(碰撞精灵),还有多种音效的添加(如背景音乐.摧毁特效).以后再深入学习我只是练习一下python. 一.搭建界面(基于 ...
- 在ArcGIS中导出现有mxd的style文件
做好的地图包含许多地图符号,这是之前花了很多功夫做的,怎么把它导出来再用呢? 在ArcGIS中右键工具栏,customize,选择command选项卡,在搜索框中输入style ,选择too ...
- 为SRS流媒体服务器添加HLS加密功能(附源码)
为SRS流媒体服务器添加HLS加密功能(附源码) 之前测试使用过nginx的HLS加密功能,会使用到一个叫做nginx-rtmp-module的插件,但此插件很久不更新了,网上搜索到一个中国制造的叫做 ...
- 利用java反射读写csv中的数据
前一段有个需求需要将从数据库读取到的信息保存到csv文件中,在实现该需求的时候发现资料比较少,经过收集反射和csv相关资料,最终得到了如下程序. 1.在使用java反射读取csv文件数据时,先通 ...
- kafka--- consumer 消费消息
1. consumer API kafka 提供了两套 consumer API: 1. The high-level Consumer API 2. The SimpleConsumer API 其 ...
- 分享:纯 css 瀑布流 和 js 瀑布流
分享一次纯 css 瀑布流 和 js 瀑布流 纯 css 写瀑布流 1.multi-columns 方式: 通过 Multi-columns 相关的属性 column-count.column-ga ...
- PyQt5--基础篇:用eric6工具实现三级联动效果
今天给大家介绍下python gui界面的三级联动效果,我们用工具eric6来实现,先看下效果图. 首先我们先创建项目linkage,再新建窗体进入到Qt设计师工具开始设计界面,完成后保存并退出. 在 ...
- 复习HTML+CSS(2)
n 项目符号嵌套编号思路 标签的内容(文本.项目符号.表格.图片等)必须放在最底层标记中. n 图片标记(行内元素,单边标记) l 语法:<img 属性 = "值"&g ...
- python Josnp(跨域)
python Josnp(跨域) 所谓的跨域就是进行不用域名内的请求,好比如说我在A域名想访问B域名的内容就是一种跨域的行为. 但是在我们浏览器端会有一个同源策略的设置,这个同源策略只对Ajax请求有 ...