要求(图是盗来的QAQ)

首先用欧拉定理把幂模一下,直接就是MOD-1了

然后发现MOD-1可以分解为2,3,4679,35617,都是质数,可以直接用Lucas定理

然后用中国剩余定理合并一下即可

千万不可把MOD和MOD-1搞混了,否则调试好麻烦的

 #include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#define MAXN 35617+10
#define ll long long
#define pb push_back
#define ft first
#define sc second
#define mp make_pair
using namespace std;
ll c[],m[]={,,,,};
ll MOD=;
ll N,G;
ll inv[MAXN],finv[MAXN],fac[MAXN];
ll Pow(ll a,ll b,ll p){
ll ret=1LL;
while(b){
if(b&){
(ret*=a)%=p;
}
(a*=a)%=p;
b>>=;
}
return ret;
}
ll Inv(ll x,ll p){
return Pow(x,p-,p);
}
ll C(ll n,ll m,ll p){
if(n<m)return 0LL;
return fac[n]*finv[m]*finv[n-m]%p;
}
ll Lucas(ll n,ll m,ll p){
if(!m)return 1LL;
if(n>=p||m>=p){
ll nn=n%p,mm=m%p;
if(nn<mm)return 0LL;
return Lucas(n/p,m/p,p)*C(nn,mm,p)%p;
}
else{
return C(n,m,p);
}
}
ll solve(ll p){
fac[]=fac[]=;
finv[]=finv[]=;
inv[]=;
for(int i=;i<p;i++){
fac[i]=fac[i-]*i%p;
inv[i]=p-(inv[p%i]*(p/i)%p);
finv[i]=finv[i-]*inv[i]%p;
}
ll t=sqrt(1.0*N);
ll ret=0LL;
for(ll i=;i<=t;i++){
if(N%i==){
ret+=Lucas(N,i,p);
if(N/i!=i){
ret+=Lucas(N,N/i,p);
}
}
}
return ret;
}
ll CRT(){
ll M=MOD-;
ll ret=0LL;
for(int i=;i<=;i++){
ll t=Inv(M/m[i],m[i])%M*(M/m[i])%M;
ret+=t*c[i]%M;
ret%=M;
}
return ret;
}
int main()
{
scanf("%lld%lld",&N,&G);
if(G%MOD==){
printf("0\n");
return ;
}
for(int i=;i<=;i++) c[i]=solve(m[i]);
ll x=CRT();
ll ans=Pow(G,x,MOD);
printf("%lld\n",ans);
}

洛谷P2480 [SDOI2010]古代猪文的更多相关文章

  1. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  2. 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】

    数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...

  3. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  4. 洛谷P2480 [SDOI2010]古代猪文(卢卡斯定理+中国剩余定理)

    传送门 好吧我数学差的好像不是一点半点…… 题目求的是$G^{\sum_{d|n}C^d_n}mod\ 999911659$ 我们可以利用费马小定理$a^{k}\equiv a^{k\ mod\ (p ...

  5. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  6. 【洛谷P2480】古代猪文

    题目大意:求 \[ G^{\sum\limits_{d|N}\binom{n}{k}} mod\ \ 999911659 \] 题解:卢卡斯定理+中国剩余定理 利用卢卡斯定理求出指数和式对各个素模数的 ...

  7. 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理

    P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...

  8. P2480 [SDOI2010]古代猪文

    P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbi ...

  9. P2480 [SDOI2010]古代猪文 Lucas+CRT合并

    \(\color{#0066ff}{ 题目描述 }\) 猪王国的文明源远流长,博大精深. iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N.当然,一种语言如果字数很多,字典也相应会 ...

随机推荐

  1. linux服务器操作系统,在相同环境下,哪个做lamp服务器更稳定点?哪个版本更稳定?

    随着国内WEB服务越来越多,如何才能选择一个合适的linux服务器操作系统?在国内用的最多的好像是红帽子系列也就是red hat系列,但有些版本缺乏稳定性.新手在选择操作系统的时候最好只用偶数版本,还 ...

  2. 解决background图片拉伸问题

    ImageView中XML属性src和background的区别: background会根据ImageView组件给定的长宽进行拉伸,而src就存放的是原图的大小,不会进行拉伸.src是图片内容(前 ...

  3. maven(二)创建工程

    创建动态Web工程打war包 ​ File→new→Maven Project→勾上create a simple project→然后next> ​ 然后会报一下的错 ​ 解决 ​ 创建jav ...

  4. xShell终端下中文乱码问题

    今天,可能是因为不小心中途打断了xShell更新,结果打开xShell发现里面的中文全成了乱码.于是去网上查了一下原因.  更新xshell(xshell5)以及其他终端中文乱码的原因无非有三种 (1 ...

  5. 关于网页设计的css+html相对定位和决定定位的理解

    css中有很多定位,其中最重要的是相对定位和绝对定位: 定位很重要,不搞好,网页就会很乱,显示的完全不是自己想要的效果,自己必须掌握: 首先说一个重要的结论:绝对定位,是不占位置的,总是相对离自己最近 ...

  6. Linq 对象的比较 Contains,Max

    IList<Student> studentList = new List<Student>() { new Student() { StudentID = 1, Studen ...

  7. 使用location.href跳转页面在火狐浏览器中报错404

    HTML文件中引入外部js文件,在该js文件里用window.location.href跳转相对路径下的html地址,火狐浏览器会报错404,而谷歌浏览器却显示正常·,分析了一下原因:在识别相对路径时 ...

  8. 使用pie.htc时Border-radius的兼容

    如果一个图层中(navin)使用了pie.htc来对ie6,7,8进行兼容,如若上一层(navwrap)的样式中有背景的属性,则此层 (navin) 在ie6,7,8中背景颜色不显示.如下图:此部分的 ...

  9. Python内置函数(9)——int

    英文文档: class int(x=0) class int(x, base=10) Return an integer object constructed from a number or str ...

  10. apigw鉴权分析(1-4)新浪微博开放平台 - 鉴权分析

    一.访问入口 http://open.weibo.com/wiki/%E6%8E%88%E6%9D%83%E6%9C%BA%E5%88%B6%E8%AF%B4%E6%98%8E 微博开放接口的调用,如 ...