4558: [JLoi2016]方

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 452  Solved: 205
[Submit][Status][Discuss]

Description

上帝说,不要圆,要方,于是便有了这道题。由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形

上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形

成了多少个正方形(换句话说,正方形的四个顶点都是格点)。但是这个问题对于我们来说太难了,因为点数太多

了,所以上帝删掉了这(N+1)×(M+1)中的K个点。既然点变少了,问题也就变简单了,那么这个时候这些格点组成

了多少个正方形呢?

Input

第一行三个整数 N, M, K, 代表棋盘的行数、 列数和不能选取的顶点个数。 保证 N, M >= 1, K <=(N + 1) ×

(M + 1)。约定每行的格点从上到下依次用整数 0 到 N 编号,每列的格点依次用 0到 M 编号。接下来 K 行,每

行两个整数 x,y 代表第 x 行第 y 列的格点被删掉了。保证 0 <=x <=N<=10^6, 0 <=y<=M<=10^6,K<=2*1000且不

会出现重复的格点。

Output

仅一行一个正整数, 代表正方形个数对 100000007( 10^8 + 7) 取模之后的值

Sample Input

2 2 4
1 0
1 2
0 1
2 1

Sample Output

1

并没有调出来,调出来也是TLE

容斥,ans=所有格点正方形-至少含一个非法点正方形+至少含2个-至少含3个+至少含4个
容斥很简单,主要就是统计方案难啊

由于正方形有斜放的,我们规定一个n*n的框架
顶点在框架边上的正方形有i个
考虑对于每一个非法点,除去以它为顶点的正方形(正方/斜放都要考虑)
枚举两个非法点,计算以它们为顶点的正方形另外两个点,对于含2,3,4的贡献答案。
 
判断正方形的顶点是否存在,应该用hash表,由于懒,我用了stl,估计要挂。。
 
推荐blog
http://blog.csdn.net/huanghongxun/article/details/51267460

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#define mod 100000007
#define ll long long
#define N 2005
using namespace std;
int n,m,num,px[N],py[N];
ll ans,t1,t2,t3,t4;
typedef pair<int,int>pii;
map<pii,bool>mp;
void calc(int x,int y,int z){//计算顶点在正方形框架边,顶点上的正方形个数
z=min(z,x+y);
if(!z)return;
t1=(t1+1ll*(z+3)*z/2)%mod;
if(z>x)t1=(t1-1ll*(z-x)*(z-x+1)/2)%mod;
if(z>y)t1=(t1-1ll*(z-y)*(z-y+1)/2)%mod;
}
bool check(int x,int y){return x>=0&&x<=n&&y>=0&&y<=m;}
void update(int x1,int y1,int x2,int y2){
if(!check(x1,y1)||!check(x2,y2))return;
int res=0;
if(mp[make_pair(x1,y1)])res++;
if(mp[make_pair(x2,y2)])res++;
t2++;t3+=res;if(res==2)t4++;
} void solve(int x1,int y1,int x2,int y2){
int dx=x2-x1,dy=y2-y1;
update(x1+dy,y1-dx,x2+dy,y2-dx);
update(x1-dy,y1+dx,x2-dy,y2+dx);
if (abs(dx+dy)&1) return;
dy=(dx+dy)>>1; dx-=dy;
update(x1+dx,y1+dy,x2-dx,y2-dy);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
scanf("%d%d%d",&n,&m,&num);
for(int i=1;i<=num;i++){
scanf("%d%d",&px[i],&py[i]);
mp[make_pair(px[i],py[i])]=1;
}
for(int i=1;i<=min(n,m);i++)
ans=(ans+1ll*(m-i+1)*(n-i+1)%mod*i%mod)%mod;
for(int i=1;i<=num;i++){
calc(px[i],m-px[i],py[i]);
calc(px[i],m-px[i],n-py[i]);
calc(py[i],n-py[i],px[i]);
calc(py[i],n-py[i],m-px[i]);
t1=(t1-min(px[i],py[i]))%mod;//减去掉calc重复的方案
t1=(t1-min(px[i],n-py[i]))%mod;
t1=(t1-min(m-px[i],py[i]))%mod;
t1=(t1-min(m-px[i],n-py[i]))%mod;
while(t1<0)t1+=mod;
for(int j=1;j<i;j++)solve(px[i],py[i],px[j],py[j]);
}
t2%=mod;t3%=mod;t4%=mod;
cout<<ans-t1+t2-t3/3+t4/6;
return 0;
}//?????

bzoj4558[JLoi2016]方 容斥+count的更多相关文章

  1. [BZOJ4558]:[JLoi2016]方(容斥+模拟)

    题目传送门 题目描述 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形上帝把我们派到了一个有N行M列的方格图上,图上一共有$(N+1)\times ...

  2. bzoj4558: [JLoi2016]方

    Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...

  3. bzoj千题计划281:bzoj4558: [JLoi2016]方

    http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少 ...

  4. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  5. 数学(容斥计数):LNOI 2016 方

    Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...

  6. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  7. 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

    [BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...

  8. ●BZOJ 4559 [JLoi2016]成绩比较(容斥)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...

  9. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

随机推荐

  1. 项目Beta冲刺Day3

    项目进展 李明皇 今天解决的进度 完善了程序的运行逻辑(消息提示框等) 明天安排 前后端联动调试 林翔 今天解决的进度 向微信官方申请登录验证session以维护登录态 明天安排 继续完成维护登录态 ...

  2. 直方图均衡化及matlab实现

    在处理图像时,偶尔会碰到图像的灰度级别集中在某个小范围内的问题,这时候图像很难看清楚.比如下图: 它的灰度级别,我们利用一个直方图可以看出来(横坐标从0到255,表示灰度级别,纵坐标表示每个灰度级别的 ...

  3. Node入门教程(7)第五章:node 模块化(下) npm与yarn详解

    Node的包管理器 JavaScript缺少包结构的定义,而CommonJS定义了一系列的规范.而NPM的出现则是为了在CommonJS规范的基础上,实现解决包的安装卸载,依赖管理,版本管理等问题. ...

  4. phalcon环境的搭建和dll扩展下载与选择

    phalcon需要下载一个扩展的dll文件才能运行项目 其中需要注意dll放在一个php扩展目录中windows下php/ext/,还需要在两个Php.ini文件中增加扩展说明,一般只需要更改 D:\ ...

  5. LeetCode & Q27-Remove Element-Easy

    Array Two Pointers Description: Given an array and a value, remove all instances of that value in pl ...

  6. CentOS 7 使用yum安装出现错误

    CentOS 7 使用yum安装软件出现错误: Loaded plugins: fastestmirror 此错误信息可能是因为DNS配置错误,可以通过更改配置文件来解决: 1. 使用vi打开DNS的 ...

  7. OpenShift实战(三):OpenShift持久化存储Redis

    1.模板定义 修改OpenShift自带模板 [root@master1 pv]# oc edit template redis-persistent 添加如下: 2.创建PV 编辑redis pv ...

  8. Nginx原理和配置总结

    一:前言 Nginx是一款优秀的HTTP服务器和反向代理服务器,除却网上说的效率高之类的优点,个人的切身体会是Nginx配置确实简单而且还好理解,和redis差不多,比rabbitmq好理解太多了: ...

  9. angular2 学习笔记 ( unit test 单元测试 )

    第一次写单元测试. 以前一直都有听说 TDD 的事情. 今天总算是去尝试了一下. 先说说 TDD 的想法, 是这样的, 开发项目的流程 : 确定需求 -> 写类,接口,方法的名字(不写具体实现代 ...

  10. Spring Security 入门(1-3-3)Spring Security - logout 退出登录

    要实现退出登录的功能我们需要在 http 元素下定义 logout 元素,这样 Spring Security 将自动为我们添加用于处理退出登录的过滤器 LogoutFilter 到 FilterCh ...