bzoj4558[JLoi2016]方 容斥+count
4558: [JLoi2016]方
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 452 Solved: 205
[Submit][Status][Discuss]
Description
上帝说,不要圆,要方,于是便有了这道题。由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形
上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形
成了多少个正方形(换句话说,正方形的四个顶点都是格点)。但是这个问题对于我们来说太难了,因为点数太多
了,所以上帝删掉了这(N+1)×(M+1)中的K个点。既然点变少了,问题也就变简单了,那么这个时候这些格点组成
了多少个正方形呢?
Input
第一行三个整数 N, M, K, 代表棋盘的行数、 列数和不能选取的顶点个数。 保证 N, M >= 1, K <=(N + 1) ×
(M + 1)。约定每行的格点从上到下依次用整数 0 到 N 编号,每列的格点依次用 0到 M 编号。接下来 K 行,每
行两个整数 x,y 代表第 x 行第 y 列的格点被删掉了。保证 0 <=x <=N<=10^6, 0 <=y<=M<=10^6,K<=2*1000且不
会出现重复的格点。
Output
仅一行一个正整数, 代表正方形个数对 100000007( 10^8 + 7) 取模之后的值
Sample Input
2 2 4
1 0
1 2
0 1
2 1
Sample Output
1
并没有调出来,调出来也是TLE
容斥,ans=所有格点正方形-至少含一个非法点正方形+至少含2个-至少含3个+至少含4个
容斥很简单,主要就是统计方案难啊
由于正方形有斜放的,我们规定一个n*n的框架
顶点在框架边上的正方形有i个
考虑对于每一个非法点,除去以它为顶点的正方形(正方/斜放都要考虑)
枚举两个非法点,计算以它们为顶点的正方形另外两个点,对于含2,3,4的贡献答案。
判断正方形的顶点是否存在,应该用hash表,由于懒,我用了stl,估计要挂。。
推荐blog
http://blog.csdn.net/huanghongxun/article/details/51267460
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#define mod 100000007
#define ll long long
#define N 2005
using namespace std;
int n,m,num,px[N],py[N];
ll ans,t1,t2,t3,t4;
typedef pair<int,int>pii;
map<pii,bool>mp;
void calc(int x,int y,int z){//计算顶点在正方形框架边,顶点上的正方形个数
z=min(z,x+y);
if(!z)return;
t1=(t1+1ll*(z+3)*z/2)%mod;
if(z>x)t1=(t1-1ll*(z-x)*(z-x+1)/2)%mod;
if(z>y)t1=(t1-1ll*(z-y)*(z-y+1)/2)%mod;
}
bool check(int x,int y){return x>=0&&x<=n&&y>=0&&y<=m;}
void update(int x1,int y1,int x2,int y2){
if(!check(x1,y1)||!check(x2,y2))return;
int res=0;
if(mp[make_pair(x1,y1)])res++;
if(mp[make_pair(x2,y2)])res++;
t2++;t3+=res;if(res==2)t4++;
} void solve(int x1,int y1,int x2,int y2){
int dx=x2-x1,dy=y2-y1;
update(x1+dy,y1-dx,x2+dy,y2-dx);
update(x1-dy,y1+dx,x2-dy,y2+dx);
if (abs(dx+dy)&1) return;
dy=(dx+dy)>>1; dx-=dy;
update(x1+dx,y1+dy,x2-dx,y2-dy);
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
scanf("%d%d%d",&n,&m,&num);
for(int i=1;i<=num;i++){
scanf("%d%d",&px[i],&py[i]);
mp[make_pair(px[i],py[i])]=1;
}
for(int i=1;i<=min(n,m);i++)
ans=(ans+1ll*(m-i+1)*(n-i+1)%mod*i%mod)%mod;
for(int i=1;i<=num;i++){
calc(px[i],m-px[i],py[i]);
calc(px[i],m-px[i],n-py[i]);
calc(py[i],n-py[i],px[i]);
calc(py[i],n-py[i],m-px[i]);
t1=(t1-min(px[i],py[i]))%mod;//减去掉calc重复的方案
t1=(t1-min(px[i],n-py[i]))%mod;
t1=(t1-min(m-px[i],py[i]))%mod;
t1=(t1-min(m-px[i],n-py[i]))%mod;
while(t1<0)t1+=mod;
for(int j=1;j<i;j++)solve(px[i],py[i],px[j],py[j]);
}
t2%=mod;t3%=mod;t4%=mod;
cout<<ans-t1+t2-t3/3+t4/6;
return 0;
}//?????
bzoj4558[JLoi2016]方 容斥+count的更多相关文章
- [BZOJ4558]:[JLoi2016]方(容斥+模拟)
题目传送门 题目描述 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形上帝把我们派到了一个有N行M列的方格图上,图上一共有$(N+1)\times ...
- bzoj4558: [JLoi2016]方
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...
- bzoj千题计划281:bzoj4558: [JLoi2016]方
http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少 ...
- BZOJ.4558.[JLOI2016]方(计数 容斥)
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...
- 数学(容斥计数):LNOI 2016 方
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
- 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...
- ●BZOJ 4559 [JLoi2016]成绩比较(容斥)
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
随机推荐
- mongodb 定时备份
通过centos 脚步来执行备份操作,使用crontab实现定时功能,并删除指定天数前的备份 具体操作: 1.创建Mongodb数据库备份目录 mkdir -p /home/backup/mongod ...
- wpf研究之道——datagrid控件分页
这是我们的datagrid分页效果图,有上一页,下一页,可以跳到任何一页.当页码比较多的时候,只显示几页,其余用点点,界面实现如下: <!--分页--> <StackPanel Or ...
- cookie中存中文
cookie中存中文 1:想要在cookie中存中文:需要用到URLEncoder(在jdkAPI中有介绍) Cookie cookie = new Cookie("User",U ...
- Spring知识点回顾(03)Bean的 Scope
sigleton prototype request session globalsession stepscope
- C#程序编写规范
代码书写规则 1.尽量使用接口,然后使用类实现接口,提高程序的灵活性. 2.一行不要超过80个字符. 3.尽量不要手工更改计算机生成的代码,若必须要改,一定要改为和计算机生成的代码风格一样. 4.关键 ...
- SOAPtest报错:error occurred during initialization of vm解决方法
参考:http://forums.parasoft.com/index.php?act=ST&f=36&t=614 安装SOAPtest报错:error occurred during ...
- java.lang.IllegalAccessError: tried to access method org.apache.poi.util.POILogger.log from class org.apache.poi.openxml4j.opc.ZipPackage
代码说简单也简单,说复杂那还真是寸步难行. 之前好好的excel导出功能,本地启动调试的时候突然就不行了,一直报上面的错. 一直在本地折腾了半天,去测试环境上看,又是好的,可以正常导出excel. 搜 ...
- [CodeForces10D]LCIS(最长公共上升子序列) - DP
Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行 ...
- python 保障系统(一)
python 保障系统 from django.shortcuts import render,redirect,HttpResponse from app01 import models from ...
- 【vuejs深入一】深入学习vue指令,自定义指令解决开发痛点
写在前面 一个好的架构需要经过血与火的历练,一个好的工程师需要经过无数项目的摧残. 最近博主我沉淀了几个月,或者说懒了几个月.然而大佬的指点总是一针见血,能够让人看到方向.所以我现在有觉得,一个好的 ...