Buy the Ticket

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5651    Accepted Submission(s): 2357

Problem Description
The "Harry Potter and the Goblet of Fire" will be on show in the next few days. As a crazy fan of Harry Potter, you will go to the cinema and have the first sight, won’t you?

Suppose the cinema only has one ticket-office and the price for per-ticket is 50 dollars. The queue for buying the tickets is consisted of m + n persons (m persons each only has the 50-dollar bill and n persons each only has the 100-dollar bill).

Now the problem for you is to calculate the number of different ways of the queue that the buying process won't be stopped from the first person till the last person. 
Note: initially the ticket-office has no money.

The buying process will be stopped on the occasion that the ticket-office has no 50-dollar bill but the first person of the queue only has the 100-dollar bill.

 
Input
The input file contains several test cases. Each test case is made up of two integer numbers: m and n. It is terminated by m = n = 0. Otherwise, m, n <=100.
 
Output
For each test case, first print the test number (counting from 1) in one line, then output the number of different ways in another line.
 
Sample Input
3 0
3 1
3 3
0 0
 
Sample Output
Test #1:
6
Test #2:
18
Test #3:
180
 
Author
HUANG, Ninghai

题意:

m個人拿50,n個人拿100,而且售票处没有零钱。求这排人最终能够能全买到票的方案数

(如果没有50零钱找给拿一百的人则停)。

思路:

排列的所有可能情况:C(n+m,m)

假设一个数列 0110010当买到第三个人的时候便停止了,将后面的数1->0,0->1便能得到 0111101

反之亦然,于是我们可以得出他们是一一对应的。

于是我们用所有可能减去不成立的

(C(n+m,m) - C(n+m,m+1))*m!*n! = (n+m)! * (m-n+1) / (m+1);

然后再利用JAVA的大整数即可

import java.math.BigInteger;
import java.util.Scanner; public class Main { static BigInteger []F = new BigInteger[105];
static BigInteger []A = new BigInteger[205];
public static void ini()
{
F[1] = BigInteger.valueOf(1);
A[1] = BigInteger.valueOf(1);
A[0] = BigInteger.valueOf(0);
F[0] = F[1];
for(int i = 2;i < 105;i++)
{
F[i] = F[i-1].multiply(BigInteger.valueOf(i*4-2)).divide(BigInteger.valueOf(i+1));
}
for(int i = 2;i <= 203;i++)
{
A[i] = A[i-1].multiply(BigInteger.valueOf(i));
}
}
public static void main(String[] args) {
// TODO 自动生成的方法存根
ini();
Scanner Reader = new Scanner(System.in);
int x,y;
int cas = 1;
BigInteger ans;
while(true)
{
x = Reader.nextInt();
y = Reader.nextInt(); if(x == 0 && y == 0)
break;
System.out.println("Test #"+cas+":");
cas++;
if(x < y){
System.out.println("0");
}
else
{
int t = x+y;
ans = A[t].multiply(BigInteger.valueOf(x-y+1)).divide(BigInteger.valueOf(x+1));
System.out.println(ans);
}
}
} }

  

hdu 1133 Buy the Ticket(Catalan)的更多相关文章

  1. HDU 1133 Buy the Ticket (数学、大数阶乘)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  2. hdu 1133 Buy the Ticket (大数+递推)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. HDU——1133 Buy the Ticket

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  4. Buy A Ticket(图论)

    Buy A Ticket 题目大意 每个点有一个点权,每个边有一个边权,求对于每个点u的\(min(2*d(u,v)+val[v])\)(v可以等于u) solution 想到了之前的虚点,方便统计终 ...

  5. HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  6. hdu 1133 Buy the Ticket

    首先,记50的为0,100的为1. 当m=4,n=3时,其中的非法序列有0110010; 从不合法的1后面开始,0->1,1->0,得到序列式0111101 也就是说,非法序列变为了n-1 ...

  7. HDU 1133 Buy the Ticket 卡特兰数

    设50元的人为+1 100元的人为-1 满足前随意k个人的和大于等于0 卡特兰数 C(n+m, m)-C(n+m, m+1)*n!*m! import java.math.*; import java ...

  8. HDU.2612 Find a way (BFS)

    HDU.2612 Find a way (BFS) 题意分析 圣诞节要到了,坤神和瑞瑞这对基佬想一起去召唤师大峡谷开开车.百度地图一下,发现周围的召唤师大峡谷还不少,这对基佬纠结着,该去哪一个...坤 ...

  9. HDU.1233 还是畅通工程(Prim)

    HDU.1233 还是畅通工程(Prim) 题意分析 首先给出n,代表村庄的个数 然后出n*(n-1)/2个信息,每个信息包括村庄的起点,终点,距离, 要求求出最小生成树的权值之和. 注意村庄的编号从 ...

随机推荐

  1. 201421123042 《Java程序设计》第6周学习总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...

  2. 关于kali linux 2.0的vmware tools的安装问题

    在安装好kali linux 2.0 后,首先要做的就是添加源并更新系统,否则会出现软件定位问题. 在kali 2.0中,vmware tools已经不能使用了,官方放了一个工具下载安装就好. 添加源 ...

  3. 剑指offer-链表中环的入口节点

    题目描述 一个链表中包含环,请找出该链表的环的入口结点. 解题思路 解决这个问题的第一步是如何确定一个链表中包含环.可以定义两个指针,同时从链表的头结点出发,一个指针一次走一步,另一个一次走两步.如果 ...

  4. Mego开发文档 - 快速开始

    Mego 快速开始 我们将创建一个简单的数据新增及查询来演示 Mego 的使用过程.演示中都是使用 Visual Studio 2017 作为开发工具,SQL Server 2012 作为数据库. 创 ...

  5. SpringBoot单元测试中的测试方法执行顺序

    一.忽略方法@ignore 二.执行顺序@FixMethodOrder(MethodSorter.JVM) 我们在执行JUnit测试用例时,有时需要按照定义顺序执行单元测试方法,比如如在测试数据库相关 ...

  6. Linux实战案例(6)yum查找、卸载、和安装软件

    0.查找要安装的软件名字 yum search iostat就能查到以及iostat相干的安装包了, 别的想安装一个程序,只记得一部门名称,也可以用这个措施来实现安装 yum search png | ...

  7. Spring Security入门(1-13)Spring Security的投票机制和投票器

    1.三种表决方式,默认是 一票制AffirmativeBased public interface AccessDecisionManager { /** * 通过传递的参数来决定用户是否有访问对应受 ...

  8. python常用运算符

    1. / 浮点除法,就算分子分母都是int类型,也返回float类型,比如我们用4/2,返回2.0 2. // 整数除法,根据分子分母的不同组合,返回的值有差异. 正数//正数,取整,比如5//3,返 ...

  9. 从零搭建 webpack3 环境 #1 - 安装使用

    目录: (1)什么是webpack (2)webpack核心概念 (3)环境安装 (4)开始使用webpack 1.什么是webpack 官网的一幅图对webpack的解释,从图中可以看出,webpa ...

  10. js基本包装类型和引用类型

    回顾 1.什么是基本类型? 共5个.boolean,string,number,null,undefined. 2.什么是引用类型? 引用类型的值是对象,保存在堆内存中: 引用类型的变量实际上是一个指 ...