【bzoj4569 scoi2016】萌萌哒
题目描述
一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串Sl1Sl1+1Sl1+2...Sr1与Sl2Sl2+1Sl2+2...Sr2完全相同。
比如n=6时,某限制条件l1=1,r1=3,l2=4,r2=6,那么123123,351351均满足条件,但是12012,131141不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。
输入输出格式
输入格式:
第一行两个数n和m,分别表示大数的长度,以及限制条件的个数。接下来m行,对于第i行,有4个数li1,ri1,li2,ri2,分别表示该限制条件对应的两个区间。1<=n<=10^5,1<=m<=10^5,1<=li1,ri1,li2,ri2<=n;并且保证ri1-li1=ri2-li2。
输出格式:
一个数,表示满足所有条件且长度为n的大数的个数,答案可能很大,因此输出答案模10^9+7的结果即可。
题意:
给出长度为n,并且有m个限制l1,r1,l2,r2,指区间l1-r1和l2-r2的数完全相同,求最后数的可能性;
题解:
①笨拙的我首先考虑暴力算法,枚举i = l1 to l2,然后把l1-r1和l2-r2的元素一一合并(并查集),但是太慢了。。。。。。。。
②太慢加速就好了,引入倍增并查集:
考虑f[x][y]为第x层,第一个位置为y,f[x][y]代表的x层区间y,y+(1<<x)-1的合并情况,每次我们把l1-r1区间长度二进制拆分后与l2-r2的对应拆分区间在正确的x上合并,统计答案的时候,如果f[x][y]和另一个标号为fa的区间合并了,那么就让x-1层的y和fa合并,y+(1<<x-1)和fa+(1<<x-1)合并;
#include<cstdio>
#include<iostream>
using namespace std;
const int N = ,mod = 1e9+;
int n,m,f[N][],p[];
char gc(){
static char *p1,*p2,s[];
if(p1==p2) p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
int rd(){
int x = ; char c = gc();
while(c<''||c>'') c = gc();
while(c>=''&&c<='') x=x*+c-'',c=gc();
return x;
}
int find(int j,int k){
return(f[j][k]==j)?j:f[j][k]=find(f[j][k],k);
}
void Union(int l1,int l2,int k){
if(find(l1,k) != find(l2,k))
f[f[l1][k]][k] = f[l2][k];
}
int main()
{ freopen("bzoj4569.in","r",stdin);
freopen("bzoj4569.out","w",stdout);
n=rd();m=rd();
for(int i= p[] = ;i <= ;i++) p[i] = p[i-]<<;
for(int i = ;i <= ;i++)
for(int j = ;j <= n;j++){
if(j+p[i]->n) break;
f[j][i] = j;
}
for(int i = ,l1,l2,r1,r2,len;i <= m;i++){
l1=rd(),r1=rd(),l2=rd(),r2=rd();
for(int k = ;k >= ;k--) if(l1+p[k]-<=r1) {
Union(l1,l2,k);
l1=l1+p[k],l2=l2+p[k];
}
}
for(int i = ;i >= ;i--)
for(int j = ;j+p[i]-<=n;j++){
if(find(j,i)!=j)
{
Union(j,f[j][i],i-);
Union(j+p[i-],f[j][i]+p[i-],i-);
}
}
int tot = ,ans=,tmp = ;
for(int i = ;i <= n;i++)
if(find(i,)==i) tot++;
tot--;while(tot){if(tot&) ans=1ll*ans*tmp%mod; tot>>=; tmp = 1ll*tmp*tmp%mod;}
printf("%d\n",ans);
return ;
}//by tkys_Austin;
【bzoj4569 scoi2016】萌萌哒的更多相关文章
- BZOJ4569 SCOI2016萌萌哒(倍增+并查集)
一个显然的暴力是用并查集记录哪些位之间是相等的.但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多. 于是考虑优化.使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][ ...
- [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)
首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...
- BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】
题目链接 BZOJ4569 题解 倍增的思想很棒 题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数, ...
- BZOJ4569 : [Scoi2016]萌萌哒
建立ST表,每层维护一个并查集. 每个信息可以拆成两条长度为$2$的幂次的区间相等的信息,等价于ST表里两对点的合并. 然后递归合并,一旦发现已经合并过了就退出. 因为一共只会发生$O(n\log n ...
- 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)
传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...
- bzoj4569: [Scoi2016]萌萌哒(ST表+并查集)
好喵喵的题 将一个要求用ST表分割成logn个要求,如果把f[i][j]和f[u][v]在同一个集合,那么f[i][j-1]和f[u][v-1],f[i+2^(j-1)][j-1]和f[u][u+2^ ...
- [bzoj4569][SCOI2016]萌萌哒-并查集+倍增
Brief Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,l1,r1,l2,r2,即两 ...
- BZOJ4569 [Scoi2016]萌萌哒(并查集,倍增)
类似\(ST表\)的思想,倍增\(log(n)\)地合并 你是我家的吗?不是就来呀啦啦啦.还有要来的吗?没了!那有多少个家就映射多少答案呀 倍增原来这么好玩 #include <iostream ...
- 【BZOJ4569】[Scoi2016]萌萌哒 倍增+并查集
[BZOJ4569][Scoi2016]萌萌哒 Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四 ...
- [BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增)
[BZOJ4569] [Luogu 3295] [SCOI2016]萌萌哒(并查集+倍增) 题面 有一个n位的十进制数a(无前导0),给出m条限制,每条限制\((l_1,r_1,l_2,r_2)(保证 ...
随机推荐
- Tornado 用户身份验证框架
1.安全cookie机制 import tornado.web session_id = 1 class MainHandler(tornado.web.RequestHandler): def ge ...
- java利用iTextWorker生成pdf
使用itext生成pdf,在linux环境下,中文全部失踪,因为itext要在linux下支持中文字体需要引入itext-asian, 并添加一个字体类. public static class Pd ...
- hadoop基础教程免费分享
提起Hadoop相信大家还是很陌生的,但大数据呢?大数据可是红遍每一个角落,大数据的到来为我们社会带来三方面变革:思维变革.商业变革.管理变革,各行业将大数据纳入企业日常配置已成必然之势.阿里巴巴创办 ...
- Centos7 Yum方式安装Mysql7
不废话,直奔主题,可以覆盖安装. 下载并安装MySQL官方的 Yum Repository [root@localhost ~]# wget -i -c http://dev.mysql.com/ge ...
- 服务器Windows Server 2008 远程控制安全设置技巧
为了保障服务器远程控制操作的安全性,Windows Server 2008系统特意在这方面进行了强化,新推出了许多安全防范功能,不过有的功能在默认状态下并没有启用,这需要我们自行动手,对该系统进行合适 ...
- Mego开发文档 - 基本保存操作
基本保存操作 在Mego中没有更改跟踪,也就是说所有的新增.更新及删除都需要开发者自行判断.Mego会最为实际的将各个数据操作提交给数据库并执行. 添加数据 using (var db = new O ...
- Spring知识点回顾(02)AOP
一.注解拦截 二.方法规则拦截
- Spring Security 入门(1-1)Spring Security是什么?
1.Spring Security是什么? Spring Security 是一个安全框架,前身是 Acegi Security , 能够为 Spring企业应用系统提供声明式的安全访问控制. Spr ...
- Django中自定义过滤器的使用
我在这里做的是: 从数据库查出id递增的一些信息,展示在前台. 编写一个过滤器判断查出数据的id是偶数的返回True 奇数返回False 1 创建项目,创建应用,注册应用,配置settings.py文 ...
- 编码注释coding: utf-8
# -*- coding: utf-8 -*- PY文件当中是不支持中文的,即使你输入的注释是中文也不行,为了解决这个问题,就需要把文件编码类型改为UTF-8的类型,输入这个代码就可以让PY源文件里面 ...