http://blog.csdn.net/pipisorry/article/details/52599451

基础知识

数据缺失的三种情形:

数据的似然和观测模型

Note: MLE中是将联合概率P(x,y)赋值给实例。

缺失数据的处理:不仅考虑数据产生机制,还要考虑数据被隐藏的机制

随机缺失值:主要是修改投掷结果X(随机变量)吧?

蓄意缺失值:主要是修改观测变量O吧?

随机变量X、观测变量O和实际观测Y

Note: Y是定义的X和O的一个确定函数,不在plate图中显示出来。

图钉变体示例的观测模型

随机缺失:分别最大化似然和观测

上下文特定独立性

蓄意缺失:投掷结果随机变量和蓄意抛弃共同的结果

观测机制的解耦

解耦的含义就是我们可以最大化X的分布的参数的似然,而不用考虑控制Ox分布的参数的值。通常,我们只对前面的参数感兴趣,所以可以简单的忽略后面的参数。

例19.1

完全随机缺失MCAR

随机缺失MAR的条件独立性参数解耦

Note: 第一枚硬币Ox1总是能观察到的,其概率为1。

缺失数据模型Pmissing:事件层面上的MAR条件独立假设

一句话:这个假设就是给定Xobs时,事件Ox和Xhidden独立。也就是说,隐不隐藏和是不是人为改变观测变量O无关?

MAR假设允许学习参数时忽略观测模型

如果Pmissing满足上面的假设则:(xobs和o的联合分布)

MAR假设下的定理

MAR适用场合

似然函数

缺失数据的似然函数表示

似然函数学习的示例

完备数据的似然

不完备数据似然的计算:考虑缺失数据的所有情况,并将其对应的似然相加。而可能赋值的数目是缺失值总量的指数。

不完备数据的多峰似然函数

几何分析:失去参数独立性质,因此也失去了似然函数可分解的性质。

图模型定性分析

数值分析

这个也可以从图19.4看出,当X缺失时,观测到Y,这样Y的两个参数父节点就是相关的?

这个例子说明,在估计CPD P(Y|X)时,我们已经缺失了局部可分解性。

不同CPD间的全局可分解性

Note: 如果是完备数据,这里应该求解的是P(x, y, h)的联合概率分布,没有和式,只有三者(三个局部似然函数)乘积。而存在隐含变量时,应该使用和式将隐含变量积掉。

一般的情况示例

在下面的参数估计中再解决这个不完备数据的参数推断。

可识别性

。。。

皮皮blog

使用不完备数据的最大似然估计MLE

使用不完备数据的贝叶斯学习

[PGM:不完备数据的参数估计]

结构学习

结构得分

结构搜索

结构EM

皮皮blog

带有隐变量的学习模型

隐变量的信息内容

确定基数

引入隐变量

皮皮blog

from: http://blog.csdn.net/pipisorry/article/details/52599451

ref:

PGM:部分观测数据的更多相关文章

  1. PGM:有向图模型:贝叶斯网络

    http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值 ...

  2. PGM学习之七 MRF,马尔科夫随机场

    之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解.恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关 ...

  3. ZeroMQ接口函数之 :zmq_pgm – ØMQ 使用PGM 进行可靠的多路传输

    ZeroMQ API 目录 :http://www.cnblogs.com/fengbohello/p/4230135.html ——————————————————————————————————— ...

  4. pgm revert转换 成jpg 人脸识别图片

    最近在搞人脸识别,下载数据集走得比较心累.很多数据集太大了.没有啥标签.先搞一个小的玩玩.还找到的是pgm灰度图.索性写了个小脚本,用来转换.同时写脚本打标签. 数据集地址:http://downlo ...

  5. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  6. 机器学习&数据挖掘笔记_24(PGM练习八:结构学习)

    前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法, ...

  7. 机器学习&数据挖掘笔记_23(PGM练习七:CRF中参数的学习)

    前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在grap ...

  8. 机器学习&数据挖掘笔记_22(PGM练习六:制定决策)

    前言: 本次实验是将一些简单的决策理论和PGM推理结合,实验内容相对前面的图模型推理要简单些.决策理论采用的是influence diagrams,和常见图模型本质一样, 其中的决策节点也可以用CPD ...

  9. 机器学习&数据挖掘笔记_21(PGM练习五:图模型的近似推理)

    前言: 这次练习完成的是图模型的近似推理,参考的内容是coursera课程:Probabilistic Graphical Models . 上次实验PGM练习四:图模型的精确推理 中介绍的是图模型的 ...

随机推荐

  1. CSS基础:内联元素

    简介 内联元素由于涉及到文本字体,读写方向,汉字和字母差异等诸多方面的影响,因此其盒模型比块级元素更加复杂,对于内联非替换元素,比如一行文本,主要由以下几种框构成: "em 框", ...

  2. 关于MySQL Online DDL

    1. Online DDL 在 MySQL 5.1 (带InnoDB Plugin)和5.5中,有个新特性叫 Fast Index Creation(下称 FIC),就是在添加或者删除二级索引的时候, ...

  3. springboot快速入门

    SpringBoot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再 ...

  4. [JS]手动实现一个横屏滚动公告js插件

    前言 工作中要用到.在github上找的大部分都是竖屏滚动没办法只能自己手动写. 本来只是想随便实现一下的,结果一时兴起把它弄成了一个简单的小插件,开了个github仓库(希望路过点个星) JS横屏滚 ...

  5. 【实验吧】CTF_Web_简单的SQL注入之1

    题目链接:http://ctf5.shiyanbar.com/423/web/ 简单的SQL注入之1,比2,3都简单一些.利用2 的查询语句也可以实现:1'/**/union/**/select/** ...

  6. [AHOI 2005]COMMON 约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

  7. 51nod1295 XOR key(可持久化trie)

    1295 XOR key题目来源: HackerRank基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个长度为N的正整数数组A,再给出Q个查询,每个查 ...

  8. 【USACO17JAN】Promotion Counting晋升者计数 线段树+离散化

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

  9. bzoj4830 hnoi2017 抛硬币

    题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...

  10. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...