吴恩达机器学习笔记61-应用实例:图片文字识别(Application Example: Photo OCR)【完结】
最后一章内容,主要是OCR的实例,很多都是和经验或者实际应用有关;看完了,总之,善始善终,继续加油!!
一、图像识别(店名识别)的步骤:
图像文字识别应用所作的事是,从一张给定的图片中识别文字。这比从一份扫描文档中
识别文字要复杂的多。
为了完成这样的工作,需要采取如下步骤:
1.文字侦测(Text detection)——将图片上的文字与其他环境对象分离开来
2.字符切分(Character segmentation)——将文字分割成一个个单一的字符
3.字符分类(Character classification)——确定每一个字符是什么
可以用任务流程图来表达这个问题,每一项任务可以由一个单独的小队来负责解决:
二、滑动窗口
滑动窗口是一项用来从图像中抽取对象的技术。假使我们需要在一张图片中识别行人,
首先要做的是用许多固定尺寸的图片来训练一个能够准确识别行人的模型。然后我们用之前
训练识别行人的模型时所采用的图片尺寸在我们要进行行人识别的图片上进行剪裁,然后将
剪裁得到的切片交给模型,让模型判断是否为行人,然后在图片上滑动剪裁区域重新进行剪
裁,将新剪裁的切片也交给模型进行判断,如此循环直至将图片全部检测完。
一旦完成后,我们按比例放大剪裁的区域,再以新的尺寸对图片进行剪裁,将新剪裁的
切片按比例缩小至模型所采纳的尺寸,交给模型进行判断,如此循环。
滑动窗口技术也被用于文字识别,首先训练模型能够区分字符与非字符,然后,运用滑
动窗口技术识别字符,一旦完成了字符的识别,我们将识别得出的区域进行一些扩展,然后
将重叠的区域进行合并。接着我们以宽高比作为过滤条件,过滤掉高度比宽度更大的区域
(认为单词的长度通常比高度要大)。下图中绿色的区域是经过这些步骤后被认为是文字的区域,而红色的区域是被忽略的。
以上便是文字侦测阶段。 下一步是训练一个模型来完成将文字分割成一个个字符的任
务,需要的训练集由单个字符的图片和两个相连字符之间的图片来训练模型。
模型训练完后,我们仍然是使用滑动窗口技术来进行字符识别。
以上便是字符切分阶段。 最后一个阶段是字符分类阶段,利用神经网络、支持向量机
或者逻辑回归算法训练一个分类器即可。
三、获取大量数据和人工合成数据集(这里主要指字母识别中的数据集)的两种方法:
1、没有已有样本:通常有很多字体库,我们可以采集同一个字符的不同种类字体,然后将这些字符加上不同的随机背景。
2、少量已有样本:使用已有的样本,选取一个真实的样本,然后添加将此样本扭曲、旋转(人工变形)的数据,以此来扩大数据集。
注:在决定扩大数据集之前需要考虑的问题:
① 需要先有一个低偏差的分类器,如果没有,可以通过增大特征数或者在神经网络中增大隐藏层单元数来解决
② 首先估计增加样本需要的工作量
有关获得更多数据的几种方法:
1.人工数据合成
2.手动收集、标记数据
3.众包
四、上限分析
回到我们的文字识别应用中,我们的流程图如下:
流程图中每一部分的输出都是下一部分的输入,上限分析中,我们选取一部分,手工提
供100%正确的输出结果,然后看应用的整体效果提升了多少。
总结一下上面的意思,即通过人工干预,使某一个component的准确率人工达到100%,再使用这些数据训练,如果这一component的变化导致整体系统的系统变得很好,那么说明这个component值得花时间优化。
反之,我们将某一component达到100%,系统性能仍没有提升很多,则说明这一component不值得我们花费精力改进。
吴恩达机器学习笔记61-应用实例:图片文字识别(Application Example: Photo OCR)【完结】的更多相关文章
- [C13] 应用实例:图片文字识别(Application Example: Photo OCR)
应用实例:图片文字识别(Application Example: Photo OCR) 问题描述和流程图(Problem Description and Pipeline) 图像文字识别应用所作的事是 ...
- 斯坦福第十八课:应用实例:图片文字识别(Application Example: Photo OCR)
18.1 问题描述和流程图 18.2 滑动窗口 18.3 获取大量数据和人工数据 18.4 上限分析:哪部分管道的接下去做 18.1 问题描述和流程图
- Ng第十八课:应用实例:图片文字识别(Application Example: Photo OCR)
18.1 问题描述和流程图 18.2 滑动窗口 18.3 获取大量数据和人工数据 18.4 上限分析:哪部分管道的接下去做 18.1 问题描述和流程图 图像文字识别应用所作的事是,从一张给定 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- 吴恩达机器学习笔记 —— 19 应用举例:照片OCR(光学字符识别)
http://www.cnblogs.com/xing901022/p/9374258.html 本章讲述的是一个复杂的机器学习系统,通过它可以看到机器学习的系统是如何组装起来的:另外也说明了一个复杂 ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]11机器学习系统设计3-4/查全率/查准率/F1分数
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metr ...
- 吴恩达机器学习笔记39-误差分析与类偏斜的误差度量(Error Analysis and Error Metrics for Skewed Classes)
如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统,拥有多么复杂的变量:而是构建一个简单的算法,这样你可以很快地实现它. 构建一个学习算法的推荐方法为:1 ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
随机推荐
- 使用Spring Session实现Spring Boot水平扩展
小编说:本文使用Spring Session实现了Spring Boot水平扩展,每个Spring Boot应用与其他水平扩展的Spring Boot一样,都能处理用户请求.如果宕机,Nginx会将请 ...
- Elasticsearch: 权威指南 » 深入搜索 » 多字段搜索 » 多数字段 good
跨字段实体搜索 » 多数字段编辑 全文搜索被称作是 召回率(Recall) 与 精确率(Precision) 的战场: 召回率 ——返回所有的相关文档:精确率 ——不返回无关文档.目的是在结果的 ...
- Mongodb---操作备忘
mysql/mongodb对比 CREATE TABLE USERS (a Number, b Number) Implicit or use MongoDB::createCollection() ...
- 20.如何从app业务逻辑提炼api接口
在app后端的工作中,设计api是一个很考验设计能力的工作.在项目的初始阶段,只知道具体的业务逻辑,那怎么把业务逻辑抽象和提炼,设计出api呢?通过阅读本文,可解答以上疑惑. 在本文中,是用以前做过的 ...
- HTML5 CSS3 诱人的实例 :canvas 模拟实现电子彩票刮刮乐
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/34089553 今天给大家带来一个刮刮乐的小例子~基于HTML5 canvas的, ...
- index_init_oprions.go
{ options.DocCacheSize = defaultDocCacheSize } }
- 【HADOOP】| 环境搭建:从零开始搭建hadoop大数据平台(单机/伪分布式)-下
因篇幅过长,故分为两节,上节主要说明hadoop运行环境和必须的基础软件,包括VMware虚拟机软件的说明安装.Xmanager5管理软件以及CentOS操作系统的安装和基本网络配置.具体请参看: [ ...
- Docker入门学习
Python爬虫 最近断断续续的写了几篇Python的学习心得,由于有开发经验的同学来说上手还是比较容易,而且Python提供了强大的第三方库,做一个小的示例程序还是比较简单,这不我之前就是针对Pyt ...
- TensorFlow从1到2(四)时尚单品识别和保存、恢复训练数据
Fashion Mnist --- 一个图片识别的延伸案例 在TensorFlow官方新的教程中,第一个例子使用了由MNIST延伸而来的新程序. 这个程序使用一组时尚单品的图片对模型进行训练,比如T恤 ...
- java并发编程(2) --Synchronized与Volatile区别
Synchronized 在多线程并发中synchronized一直是元老级别的角色.利用synchronized来实现同步具体有一下三种表现形式: 对于普通的同步方法,锁是当前实例对象. 对于静态同 ...