线性回归诊断--R

【转载时请注明来源】:http://www.cnblogs.com/runner-ljt/

Ljt   勿忘初心  无畏未来

作为一个初学者,水平有限,欢迎交流指正。


在R中线性回归,一般使用lm函数就可以得到线性回归模型,但是得到的模型到底合不合适?在我们使用所得到的线性模型之前就需要进行回归诊断。

线性回归的诊断,主要是检验线性回归模型的假设是否成立。

线性回归模型    y=Θ01x12x2+.......+Θmxm+ε    (自变量与因变量之间是线性关系)

基本假设:

(1)随机干扰项 ε 服从零均值,同方差,零协方差(相互独立)的正态分布

E(εi)=0  ;   var(εi)=σ2   ;   cov(εi , εj)=0     ;

εi~N(0,σ2)

(2)随机干扰项 ε 与解释变量间不相关

cov(Xi , εi) =0


(一)显著性检验

(1)回归方程显著性 F 检验 : 看自变量 X1 , X2 .....Xm  从整体上对随机变量Y是否有明显的影响 。

原假设 H0:Θ1 2=.....=Θm=0        (H若被接受则表明随机变量Y与X1 , X2 .....X之间的关系由线性回归模型表示不合适)

P值<α  :  拒绝原假设 。即在显著性水平 α 下,Y 与 X1 , X2 .....Xm 有显著的线性关系,回归方程是显著的。(自变量全体对因变量产生线性影响)

(2)回归系数显著性 t 检验:看单个的自变量 Xi 对Y是否有明显影响。

原假设   H0i :Θi =0            (H0i 若被接受则表明自变量Xi 对因变量Y的线性效果不显著)

P值<α  :   拒绝原假设 。即在显著性水平 α 下,Y 与 Xi 有显著的线性关系。

对于一元线性回归这两种检验是等价的;

对于多元线性回归,这两种检验是不等价的:

F检验显著,说明Y对自变量X1 , X2 .....Xm 整体的线性回归效果是显著的,但不等于Y对每个自变量Xi 的效果都显著;反之,某个或某几个Xi 的系数不显著,回归方程显著性的F检验仍然有可能是显著的。由于某些自变量不显著,因而在多元回归中并不是包含在回归方程中的自变量越多越好,需要剔除对Y无显著影响的自变量。

(二)拟合优度

拟合优度用于检验回归方程对样本观测值的拟合程度。

样本决定系数 R= SSR/SST = 1 - SSE/SST      (R2属于[0,1] )

R2 越接近 1 ,表明回归拟合的效果越好;

R越接近 0 ,表明回归拟合的效果越差。

与F检验相比,R2 可以更清楚直观地反映回归拟合的效果,但是并不能作为严格的显著性检验。需要指出的是,拟合优度并不是检验模型优劣的唯一标准,有时为了使模型从结构上有较合理的经济解释,在样本量n 较大时,R2 等于0.7左右我们也给回归模型以肯定态度。需要注意的是 R2与回归方程汇中自变量的数目以及样本量n有关,当样本量n与自变量的个数接近时,R2易接近于1,其中隐含着一些虚假的成分。


下面结合实例对R语言中线性拟合函数lm的结果进行分析

>
>
> head(bank)
y x1 x2 x3 x4
1 1018.4 96259 2239.1 50760 1132.3
2 1258.9 97542 2619.4 39370 1146.4
3 1359.4 98705 2976.1 44530 1159.9
4 1545.6 100072 3309.1 39790 1175.8
5 1761.6 101654 3637.9 33130 1212.3
6 1960.8 103008 4020.5 34710 1367.0
>
> fline<-lm(y~x1+x2+x3+x4,data=bank)
> summary(fline) Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = bank) Residuals:
Min 1Q Median 3Q Max
-487.35 -78.89 -2.65 137.02 403.78 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.168e+03 1.193e+03 -3.495 0.002998 **
x1 5.842e-02 1.216e-02 4.805 0.000194 ***
x2 4.142e-01 3.218e-02 12.871 7.41e-10 ***
x3 -1.384e-02 8.520e-03 -1.624 0.123826
x4 -7.062e-01 1.750e-01 -4.035 0.000959 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 217.7 on 16 degrees of freedom
Multiple R-squared: 0.9982, Adjusted R-squared: 0.9978
F-statistic: 2222 on 4 and 16 DF, p-value: < 2.2e-16 >
>

  

回归结果的诊断:

(1)F-statistic

回归方程显著性 F 检验中的F统计量,其P值<2.2e-16<0.05 ,表明Y 与 X1 , X2 ,X3,X4有显著的线性关系,回归方程整体是显著的。

(2)Coefficients

Estimate 即回归系数的估计值,其对应的 P(>|t|)为各回归系数t检验的P值。

从回归结果看,X3的P值为0.123826>0.05,表明X3对Y没有显著影响,应考虑删除变量X3;其他三个变量的P值都<0.05,对Y 都有显著的影响。

---------以上两个回归检验的结果也表明,自变量整体对于因变量有显著影响,并不表明每个自变量对因变量都有显著影响。

(3)Multiple R-squared  ;   Adjusted R-squared

分别表示 ‘拟合优度’  ,‘修正的拟合优度’

拟合优度值为 0.9982  很接近于 1 ,表明回归方程对样本观测值的拟合程度较高。


相关图形诊断:

(1)残差图

残差图分析法是一种直观、方便的分析方法。它以残差ei 为纵坐标,以其他适宜的变量(如样本拟合值)为横坐标画散点图,主要用来检验是否存在异方差。

一般情况下,当回归模型满足所有假定时,残差图上的n个点的散布应该是随机的,无任何规律。如果残差图上的点的散布呈现出一定趋势(随横坐标的增大而增大或减小),则可以判断回归模型存在异方差。

异方差:某一因素或某些因素随着解释变量观测值的变化而对被解释变量产生不同的影响,导致随机误差产生不同方差。

当存在异方差时,普通最小二乘估计存在以下问题:

(i)  参数估计值虽然是无偏的,但不是最小方差线性无偏估计;

(ii) 参数的显著性检验失效;

(iii) 回归方程的应用效果极不理想。

(2)Q-Q图

Q-Q图主要用来检验样本是否近似服从正态分布。

对于标准状态分布而言,Q-Q图上的点近似在Y=X直线附近。

(3)标准化残差方根散点图

此图类似于残差图,只是其纵坐标变为了标准化残差的绝对值开方。

(4)Cook距离图

库克距离用来判断强影响点是否为Y的异常值点。

一般认为  当D<0.5时认为不是异常值点;当D>0.5时认为是异常值点。

>
> par(mfrow=c(2,2))
> plot(fline,which=c(1:4))
>

从回归的四个图形结果来看:

残差图   Residuals vs Fitted  :  图上的点基本服从随机分布,可以认为不存在异方差的情况;

标准Q-Q图  Normal Q-Q       :  图上的点基本都在y=x直线附件,可认为样本近似服从正态分布;

标准化残差方根散点图 Scale-Location:类似与残差图,点的分布基本是随机的。

库克距离图 Cook‘s distance   :  最大的库克距离为0.3左右,可以认为没有异常值点。


R--线性回归诊断(一)的更多相关文章

  1. R--线性回归诊断(二)

    线性回归诊断--R [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt   勿忘初心  无畏未来 作为一个初学者,水平有限,欢迎交流指正. R--线性回 ...

  2. ISLR系列:(1)线性回归 Linear Regression

       Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本 ...

  3. Python爱好者社区历史文章列表(每周append更新一次)

    2月22日更新:   0.Python从零开始系列连载: Python从零开始系列连载(1)——安装环境 Python从零开始系列连载(2)——jupyter的常用操作 Python从零开始系列连载( ...

  4. nmap速查表v1.0(中文版)

    基本语法: #nmap [扫描方式] [命令选项] {目标} 扫描目标格式: IPv4 地址: 192.168.1.1IPv6 地址:AABB:CCDD::FF%eth0主机名:www.target. ...

  5. nmap速查表v1.0

    基本语法: #nmap [扫描方式] [命令选项] {目标}   扫描目标格式: IPv4 地址: 192.168.1.1IPv6 地址:AABB:CCDD::FF%eth0主机名:www.targe ...

  6. 【极值问题】【CF1063B】 Labyrinth

    传送门 Description 给你一个\(n~\times~m\)的矩阵,一开始你在第\(r\)行第\(c\)列.你的上下移动不受限制,向左最多移动\(x\)次,向右最多移动\(y\)次.求你最多能 ...

  7. 洛谷 P2155 BZOJ 2186 codevs 2301 [SDOI2008]沙拉公主的困惑

    题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...

  8. 树形dp专题总结

    树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题( ...

  9. [原]CentOS7安装Rancher2.1并部署kubernetes (二)---部署kubernetes

    ##################    Rancher v2.1.7  +    Kubernetes 1.13.4  ################ ##################### ...

随机推荐

  1. flowable设计器插件安装

    原文地址:http://www.shareniu.com/ 工欲善其事必先利其器,要想使用flowable,必须搭建一套环境,本文以Eclipse中安装flowable插件为例详细说明整个安装过程. ...

  2. Android Multimedia框架总结(二十三)MediaCodec补充及MediaMuxer引入(附案例)

    请尊重分享成果,转载请注明出处,本文来自逆流的鱼yuiop,原文链接:http://blog.csdn.net/hejjunlin/article/details/53729575 前言:前面几章都是 ...

  3. 重写方法的利器-super

    重写方法的利器-super class ilist(list): def __init__(self,dft=None,r=list()): super(ilist, self).__init__(r ...

  4. Activiti 流程部署方式 activi 动态部署(高级源码篇)

    Activiti的流程 部署方式有很多种方式,我们可以根据activit工作流引擎提供的ap方式进行部署. 当然了实际需求决定你要使用哪一种api操作,后面的总结详细介绍了使用场景. 下面看一下部署方 ...

  5. java中的interface接口

    接口:java接口是一些方法表征的集合,但是却不会在接口里实现具体的方法. java接口的特点如下: 1.java接口不能被实例化 2.java接口中声明的成员自动被设置为public,所以不存在pr ...

  6. JDBC的使用五大步骤以及查询操作-数据库编程(二)

    jdbc的使用步骤 1.加载jdbc的驱动. 2.打开数据库的连接. 3.建立一个会话,然后执行增删改查等基本的操作. 4.对结果进行处理 5.对环境进行清理,比如关闭会话等. 查询操作 首先用Cla ...

  7. 3.2、Android Studio在物理设备中运行APP

    当你构建一个Android应用时,在发布给用户之前,在物理设备上测试一下你的应用是非常必要的. 你可以使用Android设备作为运行.调试和测试应用的环境.包含在SDK中的工具让你在编译完成后在设备中 ...

  8. 【移动开发】AIDL中callback的实现

    AIDL实现就可以在客户端中调用服务端的方法,并传递数据到服务端,也可以服务端传递数据过来:但是如果要从服务端去调用客户端的方法,那么就需要注册callback! 抄自和源码:http://zxl-o ...

  9. 浅谈Android布局

    在前面的博客中,小编介绍了Android的极光推送以及如何实现登录的一个小demo,对于xml布局页面,摆控件这块的内容,小编还不是很熟练,今天小编主要简单总结一下在Android中的布局,学习过An ...

  10. hive中使用case、if:一个region统计业务(hive条件函数case、if、COALESCE语法介绍:CONDITIONAL FUNCTIONS IN HIVE)

    前言:Hive ql自己设计总结 1,遇到复杂的查询情况,就分步处理.将一个复杂的逻辑,分成几个简单子步骤处理. 2,但能合在一起的,尽量和在一起的.比如同级别的多个concat函数合并一个selec ...