Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem
题目连接:
http://www.codeforces.com/contest/689/problem/E
Description
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers n and k and n closed intervals [li, ri] on OX axis and you have to find:
In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Output
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
Sample Input
3 2
1 2
1 3
2 3
Sample Output
5
Hint
题意
给你n个区间,然后让你暴力的C(n,k)选择k个区间,一直选下去
然后问你这个k个区间求交集之后 ,这个交集的大小累加下来的答案是多少。
题解
考虑第i个数,如果被cnt个区间覆盖了,那么他对答案的贡献就是C(cnt,k)
那么我们把所有操作离散化之后,再O(n)的去扫一遍就好了。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
const int mod = 1e9+7;
long long fac[maxn];
long long qpow(long long a,long long b)
{
long long ans=1;a%=mod;
for(long long i=b;i;i>>=1,a=a*a%mod)
if(i&1)ans=ans*a%mod;
return ans;
}
long long C(long long n,long long m)
{
if(m>n||m<0)return 0;
long long s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-2)%mod;
}
int n,k;
int l[maxn],r[maxn];
int main()
{
fac[0]=1;
for(int i=1;i<maxn;i++)
fac[i]=fac[i-1]*i%mod;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&l[i]);
scanf("%d",&r[i]);
}
vector<pair<int,int> >op;
for(int i=1;i<=n;i++){
op.push_back(make_pair(l[i]-1,1));
op.push_back(make_pair(r[i],-1));
}
sort(op.begin(),op.end());
long long ans = 0;
int cnt=0;
int la=-2e9;
for(int i=0;i<op.size();i++){
ans=(ans+C(cnt,k)*(op[i].first-la))%mod;
la=op[i].first;
cnt+=op[i].second;
}
cout<<ans<<endl;
}
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合的更多相关文章
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- go 匿名函数和闭包
匿名函数 1. 函数也是一种类型,因此可以定义作为一个函数类型的变量 package main import "fmt" // 函数作为参数 func add(a, b int) ...
- Python Challenge 第 5 关攻略:peak
# -*- coding: utf-8 -*- # @Time : 2018/9/26 14:03 # @Author : cxa # @File : pickledemo.py # @Softwar ...
- Add custom daemon on Linux System
Ubuntu add custom service(daemon) Task 需要在系统启动的时候自动启动一个服务(后台程序),在系统关闭的时候关闭服务. 比如在部署某个应用之前,需要将某个任务设置成 ...
- Scrapy官网程序执行示例
Windows 10家庭中文版本,Python 3.6.4,Scrapy 1.5.0, Scrapy已经安装很久了,前面也看了不少Scrapy的资料,自己尝试使其抓取微博的数据时,居然连登录页面(首页 ...
- 动态SQL和PL/SQL的EXECUTE选项分析
EXECUTE IMMEDIATE代替了以前Oracle8i中DBMS_SQL package包.它解析并马上执行动态的SQL语句或非运行时创建的PL/SQL块.动态创建和执行SQL语句性能超前,EX ...
- Struts 2 Tutorial
Apache Struts 2 is an elegant, extensible framework for creating enterprise-ready Java web applicati ...
- day9--回顾
线程 vs 进程 进程:一堆资源集的集合.线程:操作系统能够调度的最小单位. 进程和线程的谁快是误区,进程至少包含一个线程,是没有可比性的. 线程:共享内存,两个线程同时操作一个数据,要加锁.全 ...
- jquery图片延迟加载方案解决图片太多加载缓慢问题
当在做一个图片展示站的时候,一个页面加载的图片过多会,如果服务器的带宽跟不上,明显会感觉到页面很卡,严重的浏览器也会崩溃,所以我推荐采用即看即所得的模式,当滚动到下一屏时才进行加载图片. 注意:即便如 ...
- 8VC Venture Cup 2016 - Final Round (Div. 1 Edition) E - Preorder Test 树形dp
E - Preorder Test 思路:想到二分答案了之后就不难啦, 对于每个答案用树形dp取check, 如果二分的值是val, dp[ i ]表示 i 这棵子树答案不低于val的可以访问的 最多 ...
- MapReduce的原理及执行过程
MapReduce简介 MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题. MR有两个阶段组成:Map和Reduce,用户只需实现map()和re ...