链接:点我

预处理:b[i][j]表示a[1] ... a[j]中比a[i]小的数的数量。

int get_lower_count(int b[], int l, int r)
{
return b[r] - b[l - 1];
}
枚举左端点i,右端点j,则 get_lower_count(b[j], i + 1, j) - get_lower_count(b[i], i,

j)为a[i]...a[j]的“顺序对的值”。因为a...a[j-1]中的值只有3种情况,要么比a[j]大,要么在a[i]与a[j]之间,要么比
a[i]小。比a[i]小的数,必然比a[j]小。所以用比a[j]小的数剪掉比a[i]小的数即可。

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m,tt,a[MAXN],f[MAXN][MAXN]; //1到j中比a[i]小的数
int main()
{
int i,j,k;
/*#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif*/
scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%d",a+i);
}
cl(f);
for(i=;i<=n;i++)
{
f[i][]=(a[i]>a[]);
for(j=;j<=n;j++)
{
f[i][j]=f[i][j-]+(a[j]<a[i]);
}
}
long long ans=,ans1,ans2;
for(i=;i<n;i++)
{
for(j=i+;j<=n;j++)
{
if(a[j]>a[i])
{
ans1=f[j][j]-f[j][i]; //i到j内比a[j]小的数(注意这里不包含i和j)
ans2=f[i][j]-f[i][i]; //i到j内比a[i]小的数
ans+=(ans1-ans2);
//printf("%d %d %d %d %d\n",i,j,ans1,ans2,ans);
}
}
}
printf("%I64d\n",ans);
}

vijos p1768 数学的更多相关文章

  1. 【数学规律】Vijos P1582 笨笨的L阵游戏

    题目链接: https://vijos.org/p/1582 题目大意: 就是o(o<=50)个人在n*m(n,m<=2000)的格子上放L型的东西(有点像俄罗斯方块的L,可对称旋转),问 ...

  2. 【vijos】1164 曹冲养猪(中国剩余定理)

    https://vijos.org/p/1164 好赞orz. 对于求一组线性同余方程 x=a[i](mod m[i]) 这里任意两个m[i]和m[j]都互质 那么可以用中国剩余定理来做. 对中国剩余 ...

  3. 【vijos】1543 极值问题(数论+fib数)

    https://vijos.org/p/1543 好神奇的一题.. 首先我竟然忘记n可以求根求出来,sad. 然后我打了表也发现n和m是fib数.. 严格证明(鬼知道为什么这样就能对啊,能代换怎么就能 ...

  4. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  5. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  6. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  7. 【BZOJ 1061】【Vijos 1825】【NOI 2008】志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 https://vijos.org/p/1825 直接上姜爷论文... #include< ...

  8. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  9. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

随机推荐

  1. jQuery和Prototype的兼容性和冲突的五种解决方法

    第一种情况:先加载Prototype,再加载jQuery方法一:jQuery 库和它的所有插件都是在jQuery名字空间内的,包括全局变量也是保存在jQuery 名字空间内的. 使用jQuery.no ...

  2. App测试需注意

    APP测试的时候,建议让开发打好包APK和IPA安装包,测试人员自己安装应用,进行测试.在测试过程中需要注意的测试点如下: 1安装和卸载 ●应用是否可以在iOS不同系统版本或Android不同系统版本 ...

  3. μC/OS-Ⅱ在C8051F060上的移植及其应用

    嵌入式操作系统是嵌入式应用的基础和核心.随着应用系统的不断复杂化和系统实时性需求的不断提高,对相应软件的逻辑结构.稳定性.实时性也提出了更高的要求,以传统的前后台编程模式编制软件将更加困难,而且容易出 ...

  4. SpringMVC控制器 跳转到jsp页面 css img js等文件不起作用 不显示

    今天在SpringMVC转发页面的时候发现跳转页面确实成功,但是JS,CSS等静态资源不起作用: 控制层代码: /** * 转发到查看培养方案详情的页面 * @return */ @RequestMa ...

  5. vue中使用localStorage存储信息

    一 什么是localStorage 对浏览器来说,使用 Web Storage 存储键值对比存储 Cookie 方式更直观,而且容量更大,它包含两种:localStorage 和 sessionSto ...

  6. vs2010,vs2012注释快捷键

    注释:VS2010是(Ctrl+E,C),VS2012是(Ctrl+K, Ctrl+C) 反注释:VS2010是(Ctrl+E,U),VS2012是(Ctrl+K, Ctrl+U)

  7. Python爬取微信好友

    前言 今天看到一篇好玩的文章,可以实现微信的内容爬取和聊天机器人的制作,所以尝试着实现一遍,本文记录了实现过程和一些探索的内容 来源: 痴海 链接: https://mp.weixin.qq.com/ ...

  8. 【web开发】web前端开发常用技术总结归纳

    技术选型规范规范 • Vue版本:2.x • 前端路由:vue-route • 异步请求:Axios • 全局状态管理:VueX • css预处理器:sass/less • h5项目移动端适配规则:使 ...

  9. xgboost gbdt特征点分烈点

    lightGBM与XGBoost的区别:(来源于:http://baijiahao.baidu.com/s?id=1588002707760744935&wfr=spider&for= ...

  10. H5新特性:video与audio的使用

    HTML5 DOM 为 <audio> 和 <video> 元素提供了方法.属性和事件. 这些方法.属性和事件允许您使用 JavaScript 来操作 <audio> ...