decsion tree(决策树)

其中每个内部结点表示在一个属性上的测试,每个分支代表一个属性的输出,而每个树叶结点代表类或类的分布。树的最顶层是根节点

连续变量要离散化

机器学习中分类方法的一个重要算法

  • 信息熵:

    一个信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我么你一无所知的事情,需要了解大量新==》新的度量就等于不确定性的多少

    变量的不确定性越大,熵也就越大

ID3

通过信息熵来选择每个节点的判断依据。

infomation gain最大则为当前节点的依据。

决策树的优点缺点

优点:直观,便于理解,小规模数据集有效

缺点:处理连续变量不好 类别较多时,错误增加比较快,可规模性一般

决策树程序

  • 安装anaconda python环境

    anaconda环境包含了机器学习的基本所有库

  • 安装graphviz

    转化dot文件到pdf

  • 生成决策树图

    进入到cmd中allEectronicInformationGainorc.dot所在文件夹

dot -Tpdf allEectronicInformationGainorc.dot -o outpu.pdf
  • program
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import csv
import os
from sklearn import preprocessing
from sklearn.feature_extraction import DictVectorizer
from sklearn import tree
dataDir = os.path.dirname(__file__) #载入数据并分割
allElectroncsData = open(dataDir+"/data/red.csv","r")
reader = csv.reader(allElectroncsData)
num =0
headers = []
for row in reader:
headers = row
if num == 0:
break
print(headers) featureList = []
labelList = [] for row in reader:
labelList.append(row[-1])
rowDict={}
for i in range(1 , len(row)-1):
rowDict[headers[i]] = row[i]
featureList.append(rowDict)
print(labelList)
for feature in featureList:
print(feature) #vectordic,向量化
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList).toarray()
print(dummyX)
print(vec.get_feature_names()) #vectorize calss labels
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print("dummyY:"+str(dummyY)) #using decision tree for classfication
clf = tree.DecisionTreeClassifier(criterion='entropy')##度量标准为entropy信息熵
clf = clf.fit(dummyX,dummyY)
print("clf"+str(clf)) #viuslize model,可视化
# with open("allEectronicInformationGainorc.dot", 'w') as f:
# f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f)
#
# with open("hello.dot", "w") as f1:
# f1 = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f1)
#predic 预测
oneRowX = dummyX[0,:]
print("oneRowX:"+str(oneRowX)) newRowX = oneRowX newRowX[0] =1
newRowX[2] =0
print("newRowX: "+str(newRowX)) predictedY = clf.predict(newRowX)
print("predictY: "+str(predictedY))

scikit-learn决策树的python实现以及作图的更多相关文章

  1. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  4. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  5. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  6. 用python的turtle作图(二)动画吃豆人

    本文是用python的turtle作图的第二篇,通过这个例子可以了解动画的原理,用python自带的turtle库制作一些小动画. 1.问题描述 在上一篇"用python的turtle作图( ...

  7. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

  8. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  9. 决策树及其python实现

    剪枝 由于悲观错误剪枝 PEP (Pessimistic Error Pruning).代价-复杂度剪枝 CCP (Cost-Complexity Pruning).基于错误剪枝 EBP (Error ...

随机推荐

  1. 记一次简单爬虫(豆瓣/dytt)

    磕磕绊绊学python一个月,这次到正则表达式终于能写点有趣的东西,在此作个记录: ————————————————————————————————————————————————— 1.爬取豆瓣电影 ...

  2. jquery3.0移除了.load()方法

    参考链接:新版jquery去掉load事件了吗? 今天也遇到了这个问题,查了一下文档,确实从3.0开始移除了load.unload.error事件方法.不过依然可以用on方法绑定这些事件. Break ...

  3. for、for..in、forEach、$.each等循环性能测试

    var num = 10000000,arr = []; for(i=0;i<num;i++){ arr[i] = i+2; } //1) 使用 for 循环 function test1() ...

  4. 关于session销毁的问题,invalidate() 和removeAttribute()

    request.getSession().invalidate(); 销毁当前会话域中的所有属性 request.getSession().removeAttribute("username ...

  5. elixir 模式匹配

    elixir 模式匹配刚接触还是有点不习惯,在Elixir里,=操作符被称为匹配操作符 iex(29)> x = 11iex(30)> x1iex(31)> 1 = x1iex(32 ...

  6. .NET源代码已经下载,潜心研读…

    有兴趣的弟兄可以从这里下载:http://referencesource.microsoft.com

  7. Metinfo 5.x 管理员密码重置漏洞

    前言 在先知看到了一篇分析该漏洞的文章,复现分析一下,漏洞还是比较有趣的. 正文 首先知道是 管理员密码重置时出现的问题,于是抓包,定位到相关的php文件. 首先包含了 ../include/comm ...

  8. Surface电池阈值

    Surface电池阈值 笔记本电脑一般都会提供一个电池保养的软件,其主要最用是让电池在插电情况下保持在50%-80%之间,以延长电池寿命,减少电池损耗.而微软自家的Surface却一直没有这个设置. ...

  9. webpack必知必会

    细节 url-loader和file-loader是什么关系? file-loader用于将文件路径打包为另一个url,url-loader封装了file-loader.使用url-loader时,只 ...

  10. numpy深入理解剖析

    http://www.scipy-lectures.org/advanced/advanced_numpy/index.html