scikit-learn决策树的python实现以及作图
decsion tree(决策树)
其中每个内部结点表示在一个属性上的测试,每个分支代表一个属性的输出,而每个树叶结点代表类或类的分布。树的最顶层是根节点
连续变量要离散化
机器学习中分类方法的一个重要算法
信息熵:
一个信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我么你一无所知的事情,需要了解大量新==》新的度量就等于不确定性的多少
变量的不确定性越大,熵也就越大
ID3
通过信息熵来选择每个节点的判断依据。
infomation gain最大则为当前节点的依据。
决策树的优点缺点
优点:直观,便于理解,小规模数据集有效
缺点:处理连续变量不好 类别较多时,错误增加比较快,可规模性一般
决策树程序
安装anaconda python环境
anaconda环境包含了机器学习的基本所有库安装graphviz
转化dot文件到pdf生成决策树图
进入到cmd中allEectronicInformationGainorc.dot所在文件夹
dot -Tpdf allEectronicInformationGainorc.dot -o outpu.pdf
- program
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import csv
import os
from sklearn import preprocessing
from sklearn.feature_extraction import DictVectorizer
from sklearn import tree
dataDir = os.path.dirname(__file__)
#载入数据并分割
allElectroncsData = open(dataDir+"/data/red.csv","r")
reader = csv.reader(allElectroncsData)
num =0
headers = []
for row in reader:
headers = row
if num == 0:
break
print(headers)
featureList = []
labelList = []
for row in reader:
labelList.append(row[-1])
rowDict={}
for i in range(1 , len(row)-1):
rowDict[headers[i]] = row[i]
featureList.append(rowDict)
print(labelList)
for feature in featureList:
print(feature)
#vectordic,向量化
vec = DictVectorizer()
dummyX = vec.fit_transform(featureList).toarray()
print(dummyX)
print(vec.get_feature_names())
#vectorize calss labels
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print("dummyY:"+str(dummyY))
#using decision tree for classfication
clf = tree.DecisionTreeClassifier(criterion='entropy')##度量标准为entropy信息熵
clf = clf.fit(dummyX,dummyY)
print("clf"+str(clf))
#viuslize model,可视化
# with open("allEectronicInformationGainorc.dot", 'w') as f:
# f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f)
#
# with open("hello.dot", "w") as f1:
# f1 = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f1)
#predic 预测
oneRowX = dummyX[0,:]
print("oneRowX:"+str(oneRowX))
newRowX = oneRowX
newRowX[0] =1
newRowX[2] =0
print("newRowX: "+str(newRowX))
predictedY = clf.predict(newRowX)
print("predictY: "+str(predictedY))
scikit-learn决策树的python实现以及作图的更多相关文章
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 用python的turtle作图(二)动画吃豆人
本文是用python的turtle作图的第二篇,通过这个例子可以了解动画的原理,用python自带的turtle库制作一些小动画. 1.问题描述 在上一篇"用python的turtle作图( ...
- Python第三方库(模块)"scikit learn"以及其他库的安装
scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
- 决策树及其python实现
剪枝 由于悲观错误剪枝 PEP (Pessimistic Error Pruning).代价-复杂度剪枝 CCP (Cost-Complexity Pruning).基于错误剪枝 EBP (Error ...
随机推荐
- 仿ElementUI构建自己的Vue组件库用babel-plugin-component按需加载组件及自定义SASS主题
最近使用ElementUI做项目的时候用Babel的插件babel-plugin-component做按需加载,使得组件打包的JS和CSS包体积大大缩小,加载速度也大大提升,所有想模仿做一个组件库也来 ...
- java网络编程(TCP详解)
网络编程详解-TCP 一,TCP协议的特点 面向连接的协议(有发送端就一定要有接收端) 通过三次连接握手建立连接 通过四次握手断开连接 基于IO流传输数据 传输数据大小 ...
- SQL NVARCHAR和VARCHAR限制
1:NVARCHAR(max)可以存储(有时甚至更多)2GB的数据(10亿个双字节字符). 2:NVARCHAR和VARCHAR连接时的截断取决于数据类型 varchar(n) + varchar(n ...
- 【node】fs模块,文件和目录的操作
检查文件是否存在,查询文件信息 fs.stat() fs.stat('./server.js', function (err, stat) { if (stat && stat.isF ...
- PHP自定义函数&数组
<?php//生成随机数 和 时间函数//echo rand();//echo "<br>";//echo rand(0,10);//echo time();// ...
- 让索引包含null值的两种方法
1. 把有NULL值的列与一个常数,或者一个带有not null约束的列一同索引 create index ind_01 on t01(col01,1); 或者 create index ind_01 ...
- centos7安装magento随记 这就是个坑,果断放弃
在centos7通过yum安装PHP7,首先在终端运行:rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm提示错误:er ...
- 【转】ubuntu右键在当前位置打开终端
ubuntu右键在当前位置打开终端 ubuntu增加右键命令: 在终端中打开 软件中心: 搜索nautilus-open-terminal安装 命令行: sudo apt-ge ...
- Java 性能调优指南之 Java 集合概览
[编者按]本文作者为拥有十年金融软件开发经验的 Mikhail Vorontsov,文章主要概览了所有标准 Java 集合类型.文章系国内 ITOM 管理平台 OneAPM 编译呈现,以下为正文: 本 ...
- Oracle DB 12.2(12cR2)的一个新特性:硬解析失败的SQL语句(需要符合一定条件)打印到alert_sid.log中.
How to Identify Hard Parse Failures (Doc ID 1353015.1)Bug 16945190 - Diagnostic enhancement to dump ...