【51nod】1251 Fox序列的数量
题解
容斥题
我们枚举出现次数最多的数出现了K次
然后我们需要计算的序列是所有数字出现个数都不超过K - 1次
我们枚举不合法的数字的数目j,说明这个排列里除了我们固定出现K次的数至少有j个数是不合法的,先让这j个数每个数出现k次,然后再随意排列
j最大是N / K
那么复杂度就是调和级数了
代码
#include <bits/stdc++.h>
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define mo 974711
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
const int MAXN = 200000;
int fac[MAXN + 5],inv[MAXN + 5],invfac[MAXN + 5],N,M,ans;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(mul(fac[n],invfac[m]),invfac[n - m]);
}
void Init() {
fac[0] = 1;
for(int i = 1 ; i <= MAXN ; ++i) fac[i] = mul(fac[i - 1],i);
inv[0] = 1;inv[1] = 1;
for(int i = 2 ; i <= MAXN ; ++i) inv[i] = mul(inv[MOD % i],MOD - (MOD / i));
invfac[0] = 1;
for(int i = 1 ; i <= MAXN ; ++i) invfac[i] = mul(invfac[i - 1],inv[i]);
}
void Solve() {
read(N);read(M);
if(M == 1) {out(1);enter;return;}
ans = 0;
for(int i = 1 ; i <= N ; ++i) {
ans = inc(ans,mul(M,C(N + M - i - 2,M - 2)));
for(int j = 1 ; j <= min(N / i,M) ; ++j) {
int s = mul(mul(M,C(N + M - i * j - i - 2,M - 2)),C(M - 1,j));
if(j & 1) ans = inc(ans,MOD - s);
else ans = inc(ans,s);
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
int T;
read(T);
while(T--) {
Solve();
}
return 0;
}
今天状态实在不好><刷的题太少……会的还不能一次A,看到代码量过大的题就给扔了
尽快调整过来吧
NOI前立最后一个flag是单纯形……再学我觉得也学不会啥了……
不要沉湎于无意义的想念了……
【51nod】1251 Fox序列的数量的更多相关文章
- 51nod 1251 Fox序列的数量 (容斥)
枚举最多数字的出现次数$k$, 考虑其他数字的分配情况. 对至少$x$种数出现$\ge k$次的方案容斥, 有 $\sum (-1)^x\binom{m-1}{x}\binom{n-(x+1)k+m- ...
- 【51nod 1251】 Fox序列的数量(以及带限制插板法讲解)
为什么网上没有篇详细的题解[雾 可能各位聚聚觉得这道题太简单了吧 /kk 题意 首先题目是求满足条件的序列个数,条件为:出现次数最多的数仅有一个 分析 感谢 刚睡醒的 JZ姐姐在咱写题解忽然陷入自闭的 ...
- (转)AS3正则:元子符,元序列,标志,数量表达符
(转)AS3正则:元子符,元序列,标志,数量表达符: AS3正则:元子符,元序列,标志,数量表达符 七月 4th, 2010 归类于 AS3前端技术 作者Linkjun 进行评论 as3正则:元子符, ...
- Java实现蓝桥杯模拟正整数序列的数量
问题描述 小明想知道,满足以下条件的正整数序列的数量: 1. 第一项为 n: 2. 第二项不超过 n: 3. 从第三项开始,每一项小于前两项的差的绝对值. 请计算,对于给定的 n,有多少种满足条件的序 ...
- Comparing Your Heros拓扑序列的数量
给出N行英雄的比较,每一行包含两个英雄的名字,代表第一个英雄比第二个英雄更受欢迎. 英雄的数目不超过16个.问有多少种可能的受欢迎程度的序列满足N行英雄的比较. 由于只有英雄数目不超过16个,可以用二 ...
- 51nod 1042数字0-9的数量
1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19 ...
- 51nod 1042 数字0-9的数量 数位dp
1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-1 ...
- 【BZOJ】【1251】序列终结者
Splay 还是splay序列维护,这题我WA了的原因是:在Push_up的时候,当前子树的max我是直接取的L.R和v[x]的最大值,但是如果没有左/右儿子,默认是会访问0号结点的mx值,而这个值没 ...
- 51nod 1522 上下序列
题目描述 现在有1到n的整数,每一种有两个.要求把他们排在一排,排成一个2*n长度的序列,排列的要求是从左到右看,先是不降,然后是不升. 特别的,也可以只由不降序列,或者不升序列构成. 例如,下面这些 ...
随机推荐
- mongo转换副本集
本文介绍如何把独立的mongo实例转换成包含3个成员的副本集.开发和测试使用独立实例,生产使用副本集.如何安装独立的mongo实例本文不再赘述. 如果在部署副本集时还没有安装mongo实例,可以查看部 ...
- TOMCAT添加管理用户认证
添加配置文件 --原配置文件: # tail -5 /usr/local/tomcat/conf/tomcat-users.xml <user username="tomcat&quo ...
- 视差滚动(Parallax Scrolling)的一点小心得
下面内容来源于我知乎的这个答案:http://www.zhihu.com/question/20990029/answer/21436067 假期有空,整理到博客园这边,并做了一些语境的调整. ——— ...
- soj1762.排座椅
1762. 排座椅 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description 上课的时候总有一些同学和前后左右的人交头接耳,这是令 ...
- jetty 热部署
1,在pom.xml文件中配置jetty插件的参数:scanIntervalSeconds <plugin> <groupId>org.mortbay.jetty</gr ...
- 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...
- oracle02--多表关联查询
1. 多表(关联)查询 多表查询也称之为关联查询.多表关联查询等,主要是指通过多个表的关联来获取数据的一种方式. 1.1. 多表映射关系 一对多:A表的一行数据,对应B表中的多条.如:一个部门可以对应 ...
- 收集了一些python的文章
来自: 戴铭 2010-08-31 17:52:31 newthreading - safer concurrency for Python 安全并发(1回应) http://www.starming ...
- transform 动画效果
http://www.css88.com/tool/css3Preview/Transform.html transform的含义是:改变,使…变形:转换 transform的属性包括:rotate( ...
- css单行文本和多行文本溢出实现省略号显示
1.单行文本溢出 文本内容 <div class="singleLine"> HelloWorldHelloWorldHelloWorldHelloWorldHello ...