拉格朗日插值(Lagrange interpolation)是一种多项式插值方法,指插值条件中不出现被插函数导数值,过n+1个样点,满足如下图的插值条件的多项式。也叫做拉格朗日公式。

 这里以拉格朗日3次插值为例,利用C++进行实现:
 //利用lagrange插值公式
#include<iostream>
using namespace std; double Lx(int i,double x,double* Arr)
{
double fenzi=,fenmu=;
for (int k=;k<;k++)
{
if (k==i)
continue;
fenzi*=x-Arr[k];
fenmu*=Arr[i]-Arr[k];
}
return fenzi/fenmu;
} int main()
{
double xArr[]={};
double yArr[]={};
//输入4个节点坐标
cout<<"请依次输入4个节点的坐标:"<<endl;
for (int i=;i<;i++)
cin>>xArr[i]>>yArr[i]; //输入要求解的节点的横坐标
cout<<"请输入要求解的节点的横坐标:";
double x;
cin>>x;
double y=;
for (int i=;i<;i++)
y+=Lx(i,x,xArr)*yArr[i];
printf("x=%lf时,y=%lf\n",x,y); //分界,下面为已知y求x
cout<<"请输入要求解的节点的纵坐标:";
cin>>y;
x=;
for (int i=;i<;i++)
x+=Lx(i,y,yArr)*xArr[i];
printf("y=%lf时,x=%lf\n",y,x); system("pause");
return ;
}

作者:耑新新,发布于  博客园

转载请注明出处,欢迎邮件交流:zhuanxinxin@aliyun.com

拉格朗日(Lagrange)插值算法的更多相关文章

  1. 样条之拉格朗日Lagrange(一元全区间)插值函数

    这是使用拉格朗日插值函数生成的样条曲线.在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过 ...

  2. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  3. Cesium基础使用介绍

    前言 最近折腾了一下三维地球,本文简单为大家介绍一款开源的三维地球软件--Cesium,以及如何快速上手Cesium.当然三维地球重要的肯定不是数据显示,这只是数据可视化的一小部分,重要的应该是背后的 ...

  4. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

  5. 【转载】Cesium基础使用介绍

    既然给我发了参与方式,不参加似乎有点不给人面子,反正也没多少人看我的博客,那我就试试吧,也欢迎大家自己参与:2017年度全网原创IT博主评选活动投票:http://www.itbang.me/goVo ...

  6. REHの收藏列表

    搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...

  7. 简易解说拉格朗日对偶(Lagrange duality)(转载)

    引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...

  8. 拉格朗日对偶(Lagrange duality)

    拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题:              目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用 ...

  9. SVM(支持向量机)(二)—Lagrange Duality(拉格朗日对偶问题)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM有点让人头疼,但还是要弄明白.把这一大块搞懂了,会很有成就感 ...

随机推荐

  1. Linux运维二:CentOS6.6系统安装后的基本配置与优化

    CentOS6.6系统安装完成后还需要做一些配置与优化: 一:Linux内核版本号介绍 查看内核版本: [root@Gin scripts]# uname -r 2.6.32-504.el6.x86_ ...

  2. python 中的multiprocessing 模块

    multiprocessing.Pipe([duplex]) 返回2个连接对象(conn1, conn2),代表管道的两端,默认是双向通信.如果duplex=False,conn1只能用来接收消息,c ...

  3. Mongodb 笔记06 副本集的组成、从应用程序连接副本集、管理

    副本集的组成 1. 同步:MongoDB的复制功能是使用操作日志oplog实现的,操作日志包含了主节点的每一次写操作.oplog是主节点的local数据库中的一个固定集合.备份节点通过查询整个集合就可 ...

  4. 学以致用:Python爬取廖大Python教程制作pdf

    当我学了廖大的Python教程后,感觉总得做点什么,正好自己想随时查阅,于是就开始有了制作PDF这个想法. 想要把教程变成PDF有三步: 先生成空html,爬取每一篇教程放进一个新生成的div,这样就 ...

  5. Android 5.0 最应该实现的8个期望

    毫无疑问,Android 5 将是令人兴奋的操作系统,因为 Android4.0 至 4.4 版本之间并没有显著的差异,显然谷歌会在 5.0 版本中进行一些较大幅度的革新.那么,代号为“柠檬芝士蛋糕” ...

  6. CSS中的选择器(笔记)

    1.通配符选择器(*):通配符选择器是用来选择所有元素,也可以选择某个元素下的所有元素.所有浏览器都支持通配符选择器. ;;} .dome *{padding: 2px;} 2.元素选择器(Ele): ...

  7. Google Congestion Control介绍

    随着网络带宽的日益增加和便携式设备,如智能手机或平板电脑处理能力的增强,基于互联网的实时通信已经成为热点. 虽然视频会议已商用了多年,特别是SKYPE这样的视频应用在互联网上已有10年时间,但针对实时 ...

  8. spring断言使用

    断言就是断定某一个实际的值为自己预期想得到的,如果不一样就抛出异常. Assert经常用于: 1.判断method的参数是否属于正常值.2.juit中使用. import org.springfram ...

  9. 树形dp(C - Choosing Capital for Treeland CodeForces - 219D )

    题目链接:https://cn.vjudge.net/contest/277955#problem/C 题目大意:输入n,代表有n个城市,然后再输入n-1条有向边,然后让你找出一个改变边数的最小值,使 ...

  10. 一个脚本和一个容易疏忽的问题strcmp、strncmp、memcmp的用法【原创】

    一个容易疏忽的问题: strcmp.strncmp.memcmp, 对于memcmp进行字符串比较时可能会出现内存重叠的情况 status = strncmp(xdev->product, &q ...