拉格朗日(Lagrange)插值算法
拉格朗日插值(Lagrange interpolation)是一种多项式插值方法,指插值条件中不出现被插函数导数值,过n+1个样点,满足如下图的插值条件的多项式。也叫做拉格朗日公式。

//利用lagrange插值公式
#include<iostream>
using namespace std; double Lx(int i,double x,double* Arr)
{
double fenzi=,fenmu=;
for (int k=;k<;k++)
{
if (k==i)
continue;
fenzi*=x-Arr[k];
fenmu*=Arr[i]-Arr[k];
}
return fenzi/fenmu;
} int main()
{
double xArr[]={};
double yArr[]={};
//输入4个节点坐标
cout<<"请依次输入4个节点的坐标:"<<endl;
for (int i=;i<;i++)
cin>>xArr[i]>>yArr[i]; //输入要求解的节点的横坐标
cout<<"请输入要求解的节点的横坐标:";
double x;
cin>>x;
double y=;
for (int i=;i<;i++)
y+=Lx(i,x,xArr)*yArr[i];
printf("x=%lf时,y=%lf\n",x,y); //分界,下面为已知y求x
cout<<"请输入要求解的节点的纵坐标:";
cin>>y;
x=;
for (int i=;i<;i++)
x+=Lx(i,y,yArr)*xArr[i];
printf("y=%lf时,x=%lf\n",y,x); system("pause");
return ;
}
作者:耑新新,发布于 博客园
转载请注明出处,欢迎邮件交流:zhuanxinxin@aliyun.com
拉格朗日(Lagrange)插值算法的更多相关文章
- 样条之拉格朗日Lagrange(一元全区间)插值函数
这是使用拉格朗日插值函数生成的样条曲线.在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过 ...
- 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...
- Cesium基础使用介绍
前言 最近折腾了一下三维地球,本文简单为大家介绍一款开源的三维地球软件--Cesium,以及如何快速上手Cesium.当然三维地球重要的肯定不是数据显示,这只是数据可视化的一小部分,重要的应该是背后的 ...
- 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理
浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...
- 【转载】Cesium基础使用介绍
既然给我发了参与方式,不参加似乎有点不给人面子,反正也没多少人看我的博客,那我就试试吧,也欢迎大家自己参与:2017年度全网原创IT博主评选活动投票:http://www.itbang.me/goVo ...
- REHの收藏列表
搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...
- 简易解说拉格朗日对偶(Lagrange duality)(转载)
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不 ...
- 拉格朗日对偶(Lagrange duality)
拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用 ...
- SVM(支持向量机)(二)—Lagrange Duality(拉格朗日对偶问题)
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM有点让人头疼,但还是要弄明白.把这一大块搞懂了,会很有成就感 ...
随机推荐
- 【Asp.net入门3-02】使用jQuery-jQuery 入门
下面的几小节将介绍jQuery的基础知识.如前所述,不可能仅仅通过一章的内容详细介绍jQuery, 但可以向你说明如何对HTML文档中的内容执行简单的操作,以及更重要的,如何逐步实现本书其他 部分的示 ...
- 「Vue」vue cli3中axios的基本用法
1.安装axiosnpm i axios -S2.main.js中设置import axios from 'axios'Vue.prototype.$axios = axiosPS:这里有个小坑,ax ...
- Linux 下搭建 Svn+Apache
一.安装apache 1.检查apache是否安装 rpm -qa|grep httpd 2.使用yum安装apache yum -y install httpd 3.记住安装的版本号 httpd.x ...
- 《设计模式》-原则五:合成/聚合复用原则(CARP)
这个也好理解 ,这个合成/聚合复用原则指的是在一个新的对象里面使用一些已有的对象,使其成为新对象的一部分.新对象通过委派达到复用已有功能的效果. 说到这里要讲提及到“Has-A” 和“Is-A”的区别 ...
- 【Hadoop】Win7上搭建Hadoop开发环境,方法一
在Win7上,编写hadoop程序 操作系统:win7 hadoop版本:CDH3u6 1.下载安装JDK,以及Eclipse 2.新建JAVA Project 3.去cloudera网站下载hado ...
- 20155236 2016-2017-2 《Java程序设计》第五周学习总结
20155236 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 Java的异常处理是通过5个关键字来实现的:try,catch,throw,throws,f ...
- ubuntu 开机自动挂在windows下的分区
最近装了Ubuntu14.04 + windows7 的双系统,启动Ubuntu的时候,不会自动挂载win7的分区,只有我点击相应的硬盘符号时才会挂载/media下面.本着折腾到底的原则,在网上搜了搜 ...
- 微服务深入浅出(8)-- 配置中心Spring Cloud Config
Config Server从本地读取配置文件 将所有的配置文件统一写带Config Server过程的目录下,Config Server暴露Http API接口,Config Client调用Conf ...
- 【leetcode 简单】 第五十六题 快乐数
编写一个算法来判断一个数是不是“快乐数”. 一个“快乐数”定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1.如 ...
- js鼠标自定移入输入框文本框光标自动定位到文本框
1.干货直接上 选中输入框设置如下: document.getElementById("Text1").focus();