题目背景

帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里。不仅擅长许多魔法,还每天都会开发出新的魔法。只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦。

她所用的属性魔法,主要是生命和觉醒的“木”,变化和活动的“火”,基础和不动的“土”,果实和丰收的“金”,寂静和净化的“水”,机动和攻击的“日”,被动和防御的“月”七种属性

没有窗户的图书馆或许充满了灰尘,不过她认为在书旁边才是自己,所以她不能从书的旁边离开。这样已经一百年了。

题目描述

经过数年魔法的沉淀,帕秋莉将她那浩瀚无边的魔法的一部分浓缩到了一些特质的珠子中。

由于帕秋莉爱好和平,她只把象征生命和觉醒的木属性魔法和果实和丰收的金属性魔法放入了珠子中。

她认为光要这些珠子没有什么用处,于是她想将这些珠子串成魔法手环,这样就好看多了。于是,她拿出来用来串这些珠子的线 - 雾雨灵径。

她将这些珠子串到一起之后发现了一些性质:一段雾雨灵径的颜色是由两边的珠子的属性决定的,当一段雾雨灵径连接的两个珠子中只要有一个是金属性的,那么这段雾雨灵径的颜色就为金色

帕秋莉想要一个全都是金色的手环,而且她还想知道一共有多少种方案。由于她还要研究新的魔法,她就把这件事交给了你。由于她的魔法浩瀚无边,她有无穷的珠子

她并不想看着好几十位的数字,于是你需要对 1000000007 进行取模

输入输出格式

输入格式:

输入包含多组数据

第一行一个正整数 TTT ,表示数据组数。

之后每组数据有一个 nnn 代表木属性珠子和金属性珠子的总个数

输出格式:

对于每组数据,输出取模后的方案数

输入输出样例

输入样例#1:

2
5
20
输出样例#1:

11
15127
输入样例#2:

3
9
99
999
输出样例#2:

76
281781445
445494875
输入样例#3:

5
123
1234
12345
123456
1234567
输出样例#3:

528790589
200102666
537707871
262341000
534036342

说明

这里给出 n=5 时,样例的解释

使用 1,2,3,4,5 来代表各个珠子

可行的方案是

{1,3,5},{1,2,4},{1,3,4},{2,3,5},{2,4,5}

{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}

{1,2,3,4,5}

对于 20% 的数据,有 1≤n≤10 ;

对于 40% 的数据,有 1≤n≤102

对于 60% 的数据,有 1≤n≤106

对于 90% 的数据,有 1≤n≤109

对于全部的数据,有 1≤T≤10,1≤n≤1018

Solution:

  本题矩阵快速幂。

  直接打一张小一点的表,然后就能找出规律,得到递推关系:$f[1]=1,f[2]=3…f[i]=f[i-1]+f[i-2]$。

  不难发现这就是个类斐波那契数列,于是直接矩乘。

代码:

/*Code by 520 -- 10.8*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define clr(p) memset(&p,0,sizeof(p))
using namespace std;
const int mod=1e9+;
struct matrix{
int r,c;ll a[][];
}; il matrix mul(matrix x,matrix y){
matrix tp; clr(tp);
tp.r=x.r,tp.c=y.c;
For(i,,x.r-) For(j,,y.c-) For(k,,x.c-)
tp.a[i][j]=(tp.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod;
return tp;
} int main(){
int T;scanf("%d",&T);
matrix ans,tp; clr(ans),clr(tp);
ans.r=,ans.c=; tp.r=tp.c=;
while(T--){
ll n;
scanf("%lld",&n);
ans.a[][]=,ans.a[][]=;
tp.a[][]=,tp.a[][]=tp.a[][]=tp.a[][]=;
while(n){
if(n&) ans=mul(ans,tp);
n>>=,tp=mul(tp,tp);
}
printf("%lld\n",ans.a[][]);
}
return ;
}

P4910 帕秋莉的手环的更多相关文章

  1. [Luogu] P4910 帕秋莉的手环

    题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...

  2. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  3. 【题解】Luogu P4910 帕秋莉的手环

    原题传送门 "连续的两个中至少有1个金的"珂以理解为"不能有两个木相连" 我们考虑一个一个将元素加入手环 设f\([i][0/1]\)表示长度为\(i\)手环末 ...

  4. [洛谷P4910]帕秋莉的手环

    题目大意:有一个$n(n\leqslant10^{18})$个点的环,每个点可以是$0$或$1$,要求相邻点中至少一个$1$,问方案数,多组询问. 题解:先考虑是一条链的情况,令$f_{i,j}$表示 ...

  5. 洛谷 P4910 帕秋莉的手环

    题意 多组数据,给出一个环,要求不能有连续的\(1\),求出满足条件的方案数 \(1\le T \le 10, 1\le n \le 10^{18}\) 思路 20pts 暴力枚举(不会写 60pts ...

  6. 【Cogs2187】帕秋莉的超级多项式(多项式运算)

    [Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...

  7. cogs 998. [東方S2] 帕秋莉·诺蕾姬

    二次联通门 : cogs 998. [東方S2] 帕秋莉·诺蕾姬 交上去后发现自己没上榜 就想着加点黑科技 把循环展开一下 结果WA了.. 万恶的姆Q /* cogs 998. [東方S2] 帕秋莉· ...

  8. P4915 帕秋莉的魔导书(动态开点线段树)

    题目背景 帕秋莉有一个巨大的图书馆,里面有数以万计的书,其中大部分为魔导书. 题目描述 魔导书是一种需要钥匙才能看得懂的书,然而只有和书写者同等或更高熟练度的人才能看得见钥匙.因此,每本魔导书都有它自 ...

  9. COGS2187 [HZOI 2015] 帕秋莉的超级多项式

    什么都别说了,咱心态已经炸了... question 题目戳这里的说... 其实就是叫你求下面这个式子的导函数: noteskey 其实是道板子题呢~ 刚好给我们弄个多项式合集的说... 各种板子粘贴 ...

随机推荐

  1. 我在华为,软件测试人员在工作中如何运用Linux?

    从事过软件测试的小伙们就会明白会使用Linux是多么重要的一件事,工作时需要用到,面试时会被问到,简历中需要写到.对于软件测试人员来说,不需要你多么熟练使用Linux所有命令,也不需要你对Linux系 ...

  2. 2018Java年底总结

    一年又过去了,这是我的第二年的JAVA开发,总感觉有很多想说的,可惜语言组织能力着实一般,以下列举一些今年的总结. 1.首先告诫一下新入行或者新入职经验不多的小伙伴,写sql的时候根据业务能单表就单表 ...

  3. RPC之Jersey服务调用处理(一)

    1.定义:        远程过程调用, 也叫远程函数调用, 最早出现在Sun公司和HP公司的运行Unix操作系统的计算机中,用于系统间通信的一种机制.        RPC的基本通信模型是基于Cli ...

  4. CHAPTER 40 Science in Our Digital Age 第40章 我们数字时代的科学

    CHAPTER 40 Science in Our Digital Age 第40章 我们数字时代的科学 The next time you switch on your computer, you ...

  5. Ubuntu下LimeSDR Mini使用说明

    本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 LimeSDR链接:https://item.taobao.com/item.htm?spm=a230r.1 ...

  6. k8s环境搭建--基于kubeadm方法

    环境 master node: 数量 1, 系统 ubuntu 16.04_amd64 worker node: 数量 1, 系统 ubuntu 16.04_amd64 kubernetes 版本: ...

  7. Gitlab CI-2.CI流程

    参考文档: GitLab Documentation:https://docs.gitlab.com/ce/ Installation and Configuration using omnibus ...

  8. Python之并发编程-多进程

    目录 一.multiprocessiong模块介绍 二.Process类的介绍 三.进一步介绍(守护进程.锁.队列.管道.事件等) 1.守护进程 2.锁(同步锁.互斥锁) 3.信号量(了解) 4.队列 ...

  9. git push remote: User permission denied

    这种错误因为本地保存了一个错误的账号密码,只需要重新编辑成正确的账号密码 直接上方法

  10. “Hello World!”团队第六周第六次会议

    “Hello World!”团队第六周第六次会议   博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.checkout& ...