Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10778    Accepted Submission(s):
2873
Special Judge

Problem Description
The 15-puzzle has been around for over 100 years; even
if you don't know it by that name, you've seen it. It is constructed with 15
sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by
4 frame with one tile missing. Let's call the missing tile 'x'; the object of
the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4
5 6 7 8
9 10 11 12
13 14 15 x

where
the only legal operation is to exchange 'x' with one of the tiles with which it
shares an edge. As an example, the following sequence of moves solves a slightly
scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The
letters in the previous row indicate which neighbor of the 'x' tile is swapped
with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right,
left, up, and down, respectively.

Not all puzzles can be solved; in
1870, a man named Sam Loyd was famous for distributing an unsolvable version of
the puzzle, and
frustrating many people. In fact, all you have to do to make
a regular puzzle into an unsolvable one is to swap two tiles (not counting the
missing 'x' tile, of course).

In this problem, you will write a program
for solving the less well-known 8-puzzle, composed of tiles on a three by three

arrangement.

 
Input
You will receive, several descriptions of configuration
of the 8 puzzle. One description is just a list of the tiles in their initial
positions, with the rows listed from top to bottom, and the tiles listed from
left to right within a row, where the tiles are represented by numbers 1 to 8,
plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is
described by this list:

1 2 3 x 4 6 7 5 8

 
Output
You will print to standard output either the word
``unsolvable'', if the puzzle has no solution, or a string consisting entirely
of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that
produce a solution. The string should include no spaces and start at the
beginning of the line. Do not print a blank line between cases.
 
Sample Input
2 3 4 1 5 x 7 6 8
 
Sample Output
ullddrurdllurdruldr
 
Source
 
Recommend
JGShining   |   We have carefully selected several
similar problems for you:  1044 1401 1104 1254 1732
 
 康托展开优化,代码自己写的过了,做EIGHTII的时候,发现别人bfs()很简单,而且map[4][2]写的看不懂。
 
 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<string>
#include<queue>
using namespace std; struct node
{
bool flag;
char str;
int father;
}hash[];
struct st
{
char t[];
};
queue<st>Q;
int ans[]={}; int ktzk(char *c)
{
int i,j,k,sum=;
for(i=;i<=;i++)
{
k=;
for(j=i+;j<=;j++)
if(c[i]>c[j])
k++;
sum=sum+k*ans[-i];
}
return sum;
}
void bfs()
{
int i,k,num,val;
struct st cur,t;
k=ktzk("");
hash[k].flag=true;
hash[k].str='\0';
hash[k].father=k; strcpy(t.t,"");
Q.push(t); while(!Q.empty())
{
cur=Q.front();
Q.pop();
val=ktzk(cur.t);
for(i=;i<=;i++)
{
if(cur.t[i]=='')
{
k=i;
break;
}
}
if(k!= && k!= && k!=)//rigth
{
t=cur;
swap(t.t[k],t.t[k+]);
num=ktzk(t.t);
if(hash[num].flag==false)
{
hash[num].flag=true;
hash[num].str='r';
hash[num].father=val;
Q.push(t);
}
}
if(k!= && k!= && k!=)//left
{
t=cur;
swap(t.t[k],t.t[k-]);
num=ktzk(t.t);
if(hash[num].flag==false)
{
hash[num].flag=true;
hash[num].str='l';
hash[num].father=val;
Q.push(t);
}
}
if(k>=)//u
{
t=cur;
swap(t.t[k],t.t[k-]);
num=ktzk(t.t);
if(hash[num].flag==false)
{
hash[num].flag=true;
hash[num].str='u';
hash[num].father=val;
Q.push(t);
}
}
if(k<=)//D
{
t=cur;
swap(t.t[k],t.t[k+]);
num=ktzk(t.t);
if(hash[num].flag==false)
{
hash[num].flag=true;
hash[num].str='d';
hash[num].father=val;
Q.push(t);
}
}
}
}
void prepare()
{
int i;
for(i=;i<=;i++)
{
hash[i].flag=false;
}
for(i=;i<=;i++) ans[i]=ans[i-]*i;
bfs();
}
int main()
{
prepare();
char a[],b[],c[];
bool tom[];
int i,j,k,cur;
while(gets(a))
{
k=strlen(a);
b[]='\0';
for(i=,j=;i<k;i++)
{
if(a[i]=='x' || (a[i]>=''&&a[i]<=''))
{
if(a[i]=='x')
b[j]='';
else b[j]=a[i];
j++;
}
}
memset(tom,false,sizeof(tom));
for(i=;i<=;i++)
{
tom[b[i]-'']=true;
}
for(i=;i<=;i++)
{
if(tom[i]==false)
break;
}
if(i<=){printf("unsolvable\n");continue;}
cur=ktzk(b);
if(hash[cur].flag==false)
{
printf("unsolvable\n");
continue;
}
k=;
while(hash[cur].father!=cur)
{
c[k]=hash[cur].str;
k++;
cur=hash[cur].father;
}
for(i=;i<=k-;i++)
{
if(c[i]=='u')printf("d");
if(c[i]=='d')printf("u");
if(c[i]=='l')printf("r");
if(c[i]=='r')printf("l");
}
printf("\n");
}
return ;
}

hdu 1043 八数码问题的更多相关文章

  1. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

  2. HDU 1043 八数码(A*搜索)

    在学习八数码A*搜索问题的时候须要知道下面几个点: Hash:利用康托展开进行hash 康托展开主要就是依据一个序列求这个序列是第几大的序列. A*搜索:这里的启示函数就用两点之间的曼哈顿距离进行计算 ...

  3. HDU 1043 八数码(八境界)

    看了这篇博客的讲解,挺不错的.http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 判断无解的情况(写完七种境界才发现有直接判 ...

  4. HDU 1043 八数码问题的多种解法

    一.思路很简单,搜索.对于每一种状态,利用康托展开编码成一个整数.于是,状态就可以记忆了. 二.在搜索之前,可以先做个优化,对于逆序数为奇数的序列,一定无解. 三.搜索方法有很多. 1.最普通的:深搜 ...

  5. HDU 1043 八数码 Eight A*算法

    Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  6. Eight hdu 1043 八数码问题 双搜

    Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  7. hdu 1043 Eight 经典八数码问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 The 15-puzzle has been around for over 100 years ...

  8. HDU 1043 Eight(八数码)

    HDU 1043 Eight(八数码) 00 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)   Problem Descr ...

  9. Hdu 1043 Eight (八数码问题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1043 题目描述: 3*3的格子,填有1到8,8个数字,还有一个x,x可以上下左右移动,问最终能否移动 ...

随机推荐

  1. Day 26封装

    一.封装 广义上的封装: 属于一个类的静态和动态属性,总是出现在一个类中. 使用的永远用类名或者对象名调用. 狭义上的封装:就是把变量和方法私有化,在类的外部以及子类中不能直接使用了 . class ...

  2. 在QtCreater中配置Artistic Style格式化Qt程序源代码!!

    Qt很吸引人,可能是我对Qt开发工具QtCreater不熟悉,只发现里面提供了一个快捷键:"ctrl+i",很多人说这就是格式化代码快捷键,我发现这仅仅是代码缩进,并不是真正意义上 ...

  3. jvm(2)类的初始化(一)

    [深入Java虚拟机]之三:类初始化 类初始化是类加载过程的最后一个阶段,到初始化阶段,才真正开始执行类中的Java程序代码. 1,下面说的初始化主要是类变量的初始化,实例变量的初始化触发条件不同(一 ...

  4. Android中获取正在运行的服务-------ActivityManager.RunningServiceInfo的使用

    关于PackageManager和ActivityManager的使用 ,自己也写了一些DEMO 了,基本上写的线路参考了Settings模块下的 应用程序,大家如果真正的有所兴趣,建议大家看看源码, ...

  5. java中线程池的几种实现方式

    1.线程池简介:    多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力.        假设一个服务器完成一项任务所需时间为:T1 创建 ...

  6. 为什么程序员老在改 Bug,就不能一次改好吗?

    程序员的日常三件事:写Bug.改Bug.背锅.连程序员都自我调侃道,为什么每天都在加班?因为我的眼里常含Bug. 但是真的有这么多Bug要改吗?就不能一次改完吗? 程序员听这问题后要拍键盘了,还!真! ...

  7. Linux 基础命令 持续更新中...

    1.ls 显示当前文件/文件夹 显示文件大小: ls -lh  显示隐藏文件: ls -a 显示文件详细信息: ls -l (ll)2.pwd 显示当前所在路径 cat 显示当前文件下所有内容3.cd ...

  8. eolinker接口测试平台的安装部署

    1.从GitHub下载安装包: https://github.com/eolinker/CHN-EOLINKER-AMS-Lite-4.0-For-Java 使用 git clone https:// ...

  9. 【Java并发编程】:Runnable和Thread实现多线程的区别

    Java中实现多线程有两种方法:继承Thread类.实现Runnable接口,在程序开发中只要是多线程,肯定永远以实现Runnable接口为主,因为实现Runnable接口相比继承Thread类有如下 ...

  10. 我与GitHub的第一次——自制音乐文件修改器

    背景: 随机播放,所有的音乐播放器里面现在几乎都有这个功能吧.但是有没有发现,自己的播放器在选择随机播放的时候,经常会听到重复顺序的歌曲呢?反正我是有这样的感觉,无耐自己平时下的歌曲都是“歌手名—歌曲 ...