2018.07.22 洛谷P3047附近的牛(树形dp)
传送门
给出一棵n" role="presentation" style="position: relative;">nn个点的树,每个点上有Ci" role="presentation" style="position: relative;">CiCi头牛,问每个点k" role="presentation" style="position: relative;">kk步范围内各有多少头牛。
刚看完题惊了这东西不可做啊。
然后就开始想换根dp" role="presentation" style="position: relative;">dpdp,结果没杠出来。
继续读题发现k" role="presentation" style="position: relative;">kk很小啊,才20" role="presentation" style="position: relative;">2020,那这怕不是可以跑一个O(nk)" role="presentation" style="position: relative;">O(nk)O(nk)的算法哦。
然后发现确实可以O(nk)" role="presentation" style="position: relative;">O(nk)O(nk)做出来,方法是这样的。
我们仍然先选一个节点(为了方便我选的就是1" role="presentation" style="position: relative;">11)当根节点,然后用siz[p][k]" role="presentation" style="position: relative;">siz[p][k]siz[p][k]表示出以每个p" role="presentation" style="position: relative;">pp作为根节点的子树中距离p" role="presentation" style="position: relative;">pp不大于k" role="presentation" style="position: relative;">kk的节点的权值和,子树之外的节点都先不管。这个东西是可以先通过儿子的信息先转移出每个p" role="presentation" style="position: relative;">pp作为根节点的子树中距离p" role="presentation" style="position: relative;">pp等于k" role="presentation" style="position: relative;">kk的节点的权值和,然后再跑一边前缀和求出来的,时间复杂度O(nk)" role="presentation" style="position: relative;">O(nk)O(nk),然后对于每一个点u" role="presentation" style="position: relative;">uu,以它作为整个树的根节点时,整棵树的贡献就是沿着u" role="presentation" style="position: relative;">uu到1" role="presentation" style="position: relative;">11的链向上跳,跳到跳不动或者已经跳了k" role="presentation" style="position: relative;">kk步停止,跳的时候用简单的容斥原理统计答案(其实就是累加siz[fa][k]−siz[p][k−1]" role="presentation" style="position: relative;">siz[fa][k]−siz[p][k−1]siz[fa][k]−siz[p][k−1]),时间复杂度仍然是O(nk)" role="presentation" style="position: relative;">O(nk)O(nk)。
代码如下:
#include<bits/stdc++.h>
#define N 100005
using namespace std;
int first[N],n,siz[N][21],cnt=0,dp[N],fa[N],k;
struct Node{int v,next;}e[N<<1];
inline void add(int u,int v){e[++cnt].v=v,e[cnt].next=first[u],first[u]=cnt;}
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
inline void write(int x){
if(x>9)write(x/10);
putchar((x%10)^48);
}
inline void dfs(int p){
for(int i=first[p];i;i=e[i].next){
int v=e[i].v;
if(v==fa[p])continue;
fa[v]=p;
dfs(v);
for(int j=1;j<=k;++j)siz[p][j]+=siz[v][j-1];
}
}
inline int solve(int p){
int ret=siz[p][k],pos=k-1;
while(fa[p]&&pos!=-1){
ret+=siz[fa[p]][pos]-(pos?siz[p][pos-1]:0);
--pos,p=fa[p];
}
return ret;
}
int main(){
n=read(),k=read();
for(int i=1;i<n;++i){
int u=read(),v=read();
add(u,v),add(v,u);
}
for(int i=1;i<=n;++i)siz[i][0]=read();
dfs(1);
for(int i=1;i<=n;++i)for(int j=1;j<=k;++j)siz[i][j]+=siz[i][j-1];
for(int i=1;i<=n;++i)write(solve(i)),puts("");
return 0;
}
2018.07.22 洛谷P3047附近的牛(树形dp)的更多相关文章
- 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)
P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...
- 2018.07.22 洛谷P2986 伟大的奶牛聚集(树形dp)
传送门 给出一棵树,树有边权和点权,若选定一个点作为中心,这棵树的代价是所有点权乘上到根的距离的和.求代价最小. 解法:一道明显的换根dp" role="presentation& ...
- 2018.07.22 洛谷P4316 绿豆蛙的归宿(概率dp)
传送门 简单的递推. 由于是DAG" role="presentation" style="position: relative;">DAGDA ...
- 2018.07.22 洛谷P1967 货车运输(kruskal重构树)
传送门 这道题以前只会树剖和最小生成树+倍增. 而现在学习了一个叫做kruskal" role="presentation" style="position: ...
- 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)
传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...
- 2018.07.09 洛谷P2365 任务安排(线性dp)
P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)
P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...
- 2018.07.17 洛谷P1368 工艺(最小表示法)
传送门 好的一道最小表示法的裸板,感觉跑起来贼快(写博客时评测速度洛谷第二),这里简单讲讲最小表示法的实现. 首先我们将数组复制一遍接到原数组队尾,然后维护左右指针分别表示两个即将进行比较的字符串的头 ...
随机推荐
- 使用JsonViewer来格式化json字符串
1. 在线转换 https://www.bejson.com/jsonviewernew/ ==>格式化 2. 使用notepad ++ 的jsonViewer插件 下载地址 http://ww ...
- 使用 C++11 编写类似 QT 的信号槽——上篇
了解 QT 的应该知道,QT 有一个信号槽 Singla-Slot 这样的东西.信号槽是 QT 的核心机制,用来替代函数指针,将不相关的对象绑定在一起,实现对象间的通信. 考虑为 Simple2D 添 ...
- Oracle+Mybatis批量插入,更新和删除
1.插入 (1)第一种方式:利用<foreach>标签,将入参的list集合通过UNION ALL生成虚拟数据,从而实现批量插入(验证过) <insert id="inse ...
- StringUtil字符串工具类
package com.zjx.test03; /** * 字符串工具类 * @author * */ public class StringUtil { /** * 判断是否是空 * @param ...
- Becoming inspired (2) - ASC 2017 March 25
Becoming inspired - part 2 @ Advanced Studio Classroom Vol: 2017 MARCH 25 7.Who was I like as a chil ...
- 扩展C#与元编程(二)
如果你对Windows Workflow Foundation(WF)一无所知,当看到扩展C#与元编程(一)中由MW编译器生成的FirstLook.mw.cs时,也许这么在想:我KAO,这是C#版的汇 ...
- ssh 设置反向代理
远程主机上/etc/ssh/sshd_config中,开启 GatewayPorts yes systemctl reload sshd 本地: ssh -CqTnN -R 0.0.0.0:9000: ...
- java 解析命令行参数
下载地址: https://jcenter.bintray.com/org/apache/commons/com.springsource.org.apache.commons.cli/1.2.0/ ...
- Java RSA 生成公钥 私钥
目前为止,RSA是应用最多的公钥加密算法,能够抵抗已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. RSA算法中,每个通信主体都有两个钥匙,一个公钥(Public Key)用来对数据进行加密 ...
- 'org.hibernate.SQLQuery' is deprecated
'org.hibernate.SQLQuery' is deprecated 在Hibernate5.2之后,SQLQuery已经被摒弃,改用NativeQuery代替了. 在Hibernate中使用 ...