本系列文章由birdlove1987编写,转载请注明出处。

文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659

什么是四元数



复数是由实数加上虚数单位 i 组成,当中

i²  = -1

相似地,四元数都是由实数加上三个元素 i、j、k 组成,并且它们有例如以下的关系:

i² = j² = k² = ijk = -1

每一个四元数都是 1、i、j 和 k 的线性组合,即是四元数一般可表示为a + bi + cj + dk。

关于四元数的历史

四元数是由哈密顿在1843年爱尔兰发现的。当时他正研究扩展复数到更高的维次(复数可视为平面上的点)。他不能做到三维空间的样例,但四维则造出四元数。依据哈密顿记述,他于10月16日跟他的妻子在都柏林的皇家运河(Royal
Canal)上散步时突然想到

                                                             i² = j² = k² = ijk = -1

方程解。之后哈密顿立马将此方程刻在附近布鲁穆桥(Brougham Bridge,现称为金雀花桥 Broom Bridge)。

不仅仅如此,哈密顿还创造了向量的内外积(大神就是大神,创造力旺盛啊-_-!)。他亦把四元数描绘成一个有序的四重实数:一个标量(a)和向量(bi + cj + dk)的组合。若两个标量部为零的四元数相乘,所得的标量部便是原来的两个向量部的标量积的负值,而向量部则为向量积的值,但它们的重要性仍有待发掘。

                           

四元数的记法

一个四元数包括一个标量分量和一个3D向量分量。常常记标量分量为w,记向量分量为单一的v或分开的x,y,z。两种记法分别例如以下:

[w,v]

[w,(x,y,z)]

四元数的性质(当年计算机图形学考的就是这题。。呜呜呜~~)

四元数不像实数或复数那样,它的乘法是不可交换的,比如

i j = k, , j i = -k ;

j k = i  , k j = -i ;

k i = j  , i k = -j .

四元数是除法环的一个样例。除了没有乘法的交换律外,除法环与域是相类的。特别地,乘法的结合律仍旧存在、非零元素仍有唯一的逆元素。

负四元数

四元数能求负。做法非常直接:将每一个分量都变负

-q = - [ w ( x y z ) ] = [ -w ( -x -y -z ) ]

     = - [ w v ] = [ -w -v ]

ps:q 和 - q代表的实际角位移是同样的,因此,3D中的随意角位移都有两中不同的四元数表示方法,它们互相为负。(由于绕某个轴旋转360°物体相当于没有旋转)

单位四元数

几何上,存在两个单位四元数,它们代表没有角位移:[ 1, 0 ] 和 [ -1, 0 ]

数学上,实际仅仅有一个单位四元数 [ 1 , 0 ] 用随意四元数q乘以单位四元数,结果仍是q。数学上觉得[ -1 , 0]不是正在的单位四元数。

四元数的模、共轭和逆

四元数的模的记法求法公式:

四元数的共轭记作 q*
,可通过让四元数的向量部分变负来获得。

四元数的逆记作,定义为四元数的共轭除以它的模。

   

四元数的乘法(叉乘)

四元数叉乘满足结合律,但不满足交换律。

(ab)c=a(bc)

ab≠ba

四元数乘积的模等于模的

||pq|| = ||p|| ||q||

四元数的“差”

四元数的“差”被定义为一个方位到还有一个方位的角位移。换句话说,给定方位a和b,就能计算a旋转到b的角位移d。

四元数点乘

对于单位四元数a和b,有-1 ≤ a·b ≤ 1。通常我们仅仅关心a·b的绝对值,由于a·b=-(a·-b),所以b和-b代表同样的角位移。

四元数点乘的几何解释类似于向量点乘的几何解释。四元数点乘a·b的绝对值越大,a和b代表的角位移越相似。

四元数的对数、指数和标量乘运算

四元数求幂

对四元数求幂在3D编程中很实用,由于它能够从角位移中抽取一部分,比如四元数q代表一个角位移,如今想得到代表1/3这个角位移的四元数,能够计算q^1/3

四元数数幂的求法

在实际3D转换中我们使用这个的代码进行抽取角位移的部分

// 四元数(输入、输出)
float w,x,y,z;
// 指数(输入)
float zhishu;
// 为了避免除零,我们这里做一个推断,由于第一个变量时cos,所以这里是.9999f
if (fabs(w) < .9999f) {
// 提取半角alpha
float alpha = acos(w);
// 计算新的alpha
float newAlpha = alpha * exponent;
// 计算新的w值
w = cos(newAlpha);
// 计算新的xyz的值
float temp = sin(newAlpha) / sin(alpha);
x *= temp;
y *= temp;
z *= temp;
}

使用程序前应先进行单位四元数的检查,由于w=±1会导致temp的计算中出现除零的现象,假设检測出是单位四元数,直接返回原四元数就可以。

四元数插值

当今3D数学中四元数存在的理由是由于一种叫做slerp的运算,它是球面线性插值的缩写(Spherical Linear Interpolation)。slerp运算很实用,由于它能够在两个四元数间平滑插值。slerp运算避免了欧拉角插值的全部问题

slerp是一种三元运算,这意味着它有三个操作数。前两个操作数是两个四元数,将在它们中间插值。设这两个開始结束的四元数分别为q0和q1.差值參数设为变量 t,t 在0到1之间变化。slerp函数:slerp(q0,q1,t)
   将返回q0和q1之间的插值方位。

// 两个输入四元数
float w0,x0,y0,z0;
float w1,x1,y1,z1;
// 差值变量
float t;
// 输出四元数
float w,x,y,z;
// 用点乘计算两个四元数夹角的cos值
float cosJiao = w0*w1 + x0*x1 + y0*y1 + z0*z1;
// 假设点乘为负,则反转一个四元数以取得短的4D弧
if (cosJiao < 0.0f) {
w1 = –w1;
x1 = –x1;
y1 = –y1;
z1 = –z1;
cosJiao = –cosJiao;
}
// 检查防止除零
float k0, k1;
if (cosJiao > 0.9999f) {
// 假设很接近,就线性插值
k0 = 1.0f–t;
k1 = t;
} else {
// 利用三角公式sin²+cos²=1计算sin值
float sinJiao = sqrt(1.0f – cosJiao*cosJiao);
// 通过sin和cos计算角度
float Jiao = atan2(sinJiao, cosJiao);
// 计算分母的倒数从而避免使用除法
float oneOverSinJiao = 1.0f / sinJiao;
// 计算插值变量
k0 = sin((1.0f – t) * Jiao) * oneOverSinJiao;
k1 = sin(t * Jiao) * oneOverSinJiao;
}
// 插入值
w = w0*k0 + w1*k1;
x = x0*k0 + x1*k1;
y = y0*k0 + y1*k1;
z = z0*k0 + z1*k1;

嘿嘿,四元数这个地方确实有点难度。。只是3D总体都不太简单,全部好好加油!

—End—

參考文献: (1)《3D Math Primer for Graphics and Game Development》

(2)  维基百科

(3) 《计算机图形学》

3D数学读书笔记——四元数的更多相关文章

  1. 3D数学读书笔记——矩阵基础

     本系列文章由birdlove1987编写,转载请注明出处.    文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031   矩 ...

  2. 3D数学读书笔记——矩阵基础番外篇之线性变换

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...

  3. 3D数学读书笔记——向量运算及在c++上的实现

     本系列文章由birdlove1987编写.转载请注明出处.     文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661   ...

  4. 3D数学读书笔记——多坐标系和向量基础

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24662453 第一个知识点 ...

  5. 3D数学读书笔记——3D中的方位与角位移

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595 方位和角位移 ...

  6. 3D数学读书笔记——矩阵进阶

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25242725 最终要学习矩阵 ...

  7. 3D数学学习笔记——笛卡尔坐标系

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学 ...

  8. 3D数学--学习笔记(五岁以下儿童):总结一些概念(避免遗忘!)

    下面是一些概念只是一个简单的解释,这里是它的一个简单的了解! 当人们谈论,我能理解有关. 1.正交投影: 投影.这意味着降维操作. 全部的点都被拉平至垂直的轴(2D)或平面(3D)上.这样的类型的投影 ...

  9. 【具体数学 读书笔记】1.2 Lines in the Plane

    本节介绍平面划分问题,即n条直线最多把一个平面划分为几个区域(region). 问题描述: "What is the maximum number Ln of regions defined ...

随机推荐

  1. Python基础:内置类型(未完待续)

    本文根据Python 3.6.5的官文Built-in Types而写. 目录 1.真值测试 2.布尔操作 -- and, or, not 3.比较 4.数字型 -- int, float, comp ...

  2. IntelliJ IDEA + Maven + Tomcat 本地开发、部署、调试。

    1.maven 下载 解压 配置下 远程仓库( 用阿里云的 比较快).本地仓库 (可以本地C盘建立个文件夹当仓库).环境变量(方便使用maven命令)就可以了. 2.tomcat 下载 解压 配置下 ...

  3. Git简明教程二、开始进行版本管理

    上一篇介绍了Git中的一些基本概念.本篇来实际看一看如何通过几个常用命令来快速上手Git,完成版本管理的日常操作(核心操作). 0. 准备工作 安装Git后,请先在你的电脑上新建或选择一个目录作为测试 ...

  4. Python 的內建模块

    >>> import __builtin__>>> dir(__builtin__)['ArithmeticError', 'AssertionError', 'A ...

  5. c 语言文本文件判断是否到达结尾的问题

    在c语言中,判断文件结尾有两种方法,第一种是使用feof()函数,feof(fp)用于测试fp所指向的文件的当前状态是否为“文件结束”.如果是,函数则返回的是非0值(真),否则为0(假),要注意的是, ...

  6. 容器计划任务大坑:在alpine容器里,想用非root帐号执行crontab任务

    我只能说抱歉,我前前后后测试了七天, 将自己预想的配置错误,一个一个去验证. 非root帐号在alpine容器里执行crontab任务,还是失败, 输出依旧是一片空白~ stackoverflow里, ...

  7. easyui tree tabs

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. 【LOJ】#2059. 「TJOI / HEOI2016」字符串

    题解 我们冷静一下,先画一棵后缀树 然后发现我们要给c和d这一段区间在[a,b]这一段开头的串里找lcp 而lcp呢,就是c点的祖先的到根的一段,假如这个祖先的子树里有[a,b - dis[u] + ...

  9. 【LOJ】#2587. 「APIO2018」铁人两项

    题解 学习了圆方树!(其实是复习了Tarjan求点双) 我又双叒叕忘记了tarjan点双一个最重要,最重要的事情! 就是--假如low[v] >= dfn[u],我们就找到了一个点双,开始建立方 ...

  10. ESLint处理

    当有遇到下划线的问题,会提示有问题,无法通过检测 需要在代码的前面加入以下代码就可以解决,地址是:https://stackoverflow.com/questions/44126983/eslint ...