【数学】【P5150】 生日礼物
Description
给定 \(n\),求
\]
input
一行一个整数代表 \(n\)
Output
一行一个整数代表答案
Hint
\(1~\leq~n~\leq~10^{16}\)
Solution
一开始看到这个形式以为是反演,然后看到数据范围就自闭了……
然后发现这是个唯一分解定理题……
吐槽一下标算 \(O(\sqrt{n})\) 暴力卡常 范围出1e16也太[数据删除]了吧(大雾
然后用py写了一发和标算差不多的暴力,惨遭卡常
所以这里来提供一种 \(O(\sqrt[3]{n})\) 的方法!
其实就是讨论里 @mrsrz 神仙的第一种踩标算做法
设
\]
\]
\]
其中 \(p\) 为质数。
则显然有
\]
我们考虑固定 \(x\) 第 \(i\) 位指数即 \(d_i~=~c_i\),则 \(e_i\) 选 \([0,c_i]\) 都是合法的,共 \(c_i~+~1\) 中选法。将 \(x,y\) 反过来同样成立。但是注意固定 \(d_i~=~c_i\) 时令 \(e_i~=~c_i\) 的选法和反过来是一样的,于是要把这个方案扣除 \(1\)。
所以对于第 \(i\) 个质因子的方案数为 \((2~\times c_i~+~1)\)。根据乘法原理,总方案数为
\]
于是 \(O(\sqrt{n})\) 分解一下,发现py被卡常了。我们考虑一种更优秀的做法:
我们在分解质因数时,分解到 \(\sqrt[3]{n}\),即当 \(i^3~>~n\) 时停止。考虑现在 \(n\) 除掉已经筛出的质因子后剩下的值共有如下几种情况:
剩下 \(1\):这种情况对答案无贡献,无需理会
剩下的数是一个质数:显然这个剩下的数是 \(n\) 的最后一个质因子,并且指数显然为 \(1\),于是直接将答案乘 \(3\) 即可
考虑除去这两种情况外,剩下的数只能是两个质数的积,而不可能是更多质数的积。
证明上,可以设剩下的最小的质数是 \(p\),则有 \(p~>~\sqrt[3]{n}\),假设是 \(k\) 个质数的乘积,那么显然有剩下的数字 \(dn~\geq~p^k\)。由于 \(p^3~>~(\sqrt[3]{n})^3~=~n\),\(dn~\leq~n\),则在 \(k~\geq~3\) 时产生矛盾,于是 \(k~\leq~2\)。
再分两种情况:
剩下的数是一个质数的平方:直接将答案乘 \(5\) 即可
否则一定是两个质数相乘。考虑每个质数贡献 \(3\),所以将答案乘上 \(9\) 即可。
考虑如何快速判断剩下的数字是一个质数:直接进行米勒拉宾质数判定,时间复杂度 \(O(\log n)\)。
考虑不损失精度的判断一个数是一个完全平方数:直接进行二分开方,时间复杂度 \(O(\log n)\)
于是总时间复杂度 \(O(\sqrt[3]{n})\),踩爆标算
Code
def mpow(x, y, p):
_ret, _temp = 1, x
while y:
if y & 1:
_ret = _ret * _temp % p
_temp = _temp * _temp % p
y >>= 1
return _ret
def ML(x, n):
if n == x: return 1
sn = n - 1
s, d = n - 1, 0
while not (s & 1):
s >>= 1
d += 1
t = mpow(x, s, n)
if t == 1 or t == -1: return 1
for i in range(d):
if t == sn: return 1
t = t * t % n
return 0
def IsPrime(x):
if not (x & 1):
if x == 2: return 1
else: return 0
elif not ML(2, x): return 0
elif not ML(7, x): return 0
elif not ML(61, x): return 0
else: return 1
def IsPow(x):
l, r, mid, = 1, x, 0
while l <= r:
mid = (l + r) >> 1
k = mid * mid
if k < x: l = mid + 1
elif k == x: return 1
else: r = mid - 1
return 0
n = int(input())
ans, i, dn = 1, 2, n
while (i * i * i) <= n:
if (dn % i) == 0:
cnt = 0
while (dn % i) == 0:
dn //= i
cnt += 1
ans *= (cnt << 1) + 1
i += 1
if dn != 1:
if IsPrime(dn):
ans *= 3
elif IsPow(dn):
ans *= 5
else:
ans *= 9
print(ans)
【数学】【P5150】 生日礼物的更多相关文章
- 洛谷 P5150 生日礼物 题解
题面 因为 n=lcm(a,b)n = lcm(a, b)n=lcm(a,b) ,可以得出: a 和 b 的质因数都是 n 的质因数 对于 n 的每个质因数 x ,在 n 中的次数为 y ,那么 ...
- 数学思想:为何我们把 x²读作x平方
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- MarkDown+LaTex 数学内容编辑样例收集
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
- 深度学习笔记——PCA原理与数学推倒详解
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...
- Sql Server函数全解<二>数学函数
阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...
- *HDU 2451 数学
Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- 如何解决Maple的应用在数学中
对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型. ...
- 如何让Maple中的数学引擎进入你的桌面应用程序和网站
MapleNET数学服务套件将Maple 2015强大的数学引擎引入您的应用程序和网站.使用MapleNET,您可以添加数学计算和可视化功能到网页和桌面程序中,通过互联网/局域网分享“活”的Maple ...
随机推荐
- 记一次nginx -t非常慢的排障经历
在一次修改nginx配置时候,执行 case: #/usr/local/nginx/sbin/nginx -t 出现执行命令出现很久没返回结果,也没返回成功或是失败,就是一直卡住的状态,严重影响ngi ...
- 01-numpy基础简介
import numpy as np # ndarray ''' # 三种创建方式 1.从python的基础数据对象转化 2.通过numpy内置的函数生成 3.从硬盘(文件)读取数据 ''' # 创建 ...
- exec命令详解
基础命令学习目录首页 原文链接: exec: 在bash下输入man exec,找到exec命令解释处,可以看到有”No new process is created.”这样的解释,这就是说exec命 ...
- 将React Native 集成进现有OC项目中(过程记录) 、jsCodeLocation 生成方式总结
将RN集成到现有OC项目应该是最常见的,特别是已经有OC项目的,不太可能会去专门搞个纯RN的项目.又因为RN不同版本,引用的依赖可能不尽相同,所以特别说明下,本文参考的文档是React Native ...
- Beta阶段基于spec评论作品
组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶 刘佳瑞 公冶令鑫 杨磊 刘欣 张宇 卢帝同 一.测试目标:拉格朗日2018——飞词 下面是他们的小游戏在运行时的一些截图画面: 1.开始界面 ...
- youi软件测试计划
beta版本中,我们将重视软件开发中的测试. 我们的软件是需要测试的,不测试怎么知道好与不好呢?有的程序不测试甚至都不能运行-- 我们的目标呢:就是经过测试之后软件的质量得到有效的保证.不管什么情况都 ...
- Java第二天——标识符命名规则、Java的知识、快捷键的使用、Scanner获取值的常用方法
1.标识符命名规则 字母.下划线.数字.美元符号($)由这四个部分组成. 标识符=首字母+其他 首字母:字母.下划线.美元符号($) 其他:字母.下划线.数字.美元符号($) 注意: 1.首字母不能为 ...
- 【TCP/IP详解 卷一:协议】第六章:DHCP 和自动配置
简介 为了使用 TCP/IP 协议族,每台主机or路由器都需要一定的配置信息: IP地址 子网掩码 广播地址 路由或转发表 DNS 协议配置方法: 手动 通过使用网络服务来获得 使用一些算法来自动确定 ...
- 25_IO_第25天(Properties、序列化流、打印流、CommonsIO)_讲义
今日内容介绍 1.Properties集合 2.序列化流与反序列化流 3.打印流 4.commons-IO 01Properties集合的特点 * A: Properties集合的特点 * a: Pr ...
- 蜗牛慢慢爬 LeetCode 36.Valid Sudoku [Difficulty: Medium]
题目 Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could ...