题目传送门

Semi-prime H-numbers

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10871   Accepted: 4881

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62

Source


  分析:

  一道素数筛法的变式题。

  把素数筛法改一下,预处理出所有答案,然后直接输出每个答案就行了。

  Code:

//It is made by HolseLee on 2nd Sep 2018
//POJ3292
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std; const int N=1e6+;
int n,ans[N],q[N],top;
bool no[N],yes[N]; int main()
{
ios::sync_with_stdio(false);
for(int i=; i<N; i+=) {
if(no[i])continue;
q[++top]=i;
for(int j=*i; j<N; j+=i*) no[j]=;
}
for(int i=; i<=top; ++i)
for(int j=; j<=i && q[i]*q[j]<N; ++j)
yes[q[i]*q[j]]=;
for(int i=; i<N; ++i)
ans[i]=ans[i-]+yes[i]; while() {
cin>>n; if(!n) break;
cout<<n<<" "<<ans[n]<<"\n";
}
return ;
}

POJ3292 Semi-prime H-numbers [数论,素数筛]的更多相关文章

  1. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

  2. UVALive-3399-Sum of Consecutive Prime Numbers(素数筛,暴力)

    原题链接 写个素数筛暴力打表一波就AC了: #include <iostream> using namespace std; const int N = 10001; int i, j, ...

  3. LightOJ-1259 Goldbach`s Conjecture 数论 素数筛

    题目链接:https://cn.vjudge.net/problem/LightOJ-1259 题意 给一个整数n,问有多少对素数a和b,使得a+b=n 思路 素数筛 埃氏筛O(nloglogn),这 ...

  4. 题解报告:poj 2689 Prime Distance(区间素数筛)

    Description The branch of mathematics called number theory is about properties of numbers. One of th ...

  5. HDU 1016 Prime Ring Problem (素数筛+DFS)

    题目链接 题意 : 就是把n个数安排在环上,要求每两个相邻的数之和一定是素数,第一个数一定是1.输出所有可能的排列. 思路 : 先打个素数表.然后循环去搜..... #include <cstd ...

  6. Bi-shoe and Phi-shoe LightOJ - 1370(数论+素数筛)

    题目链接:https://vjudge.net/problem/LightOJ-1370 题意:给你N个欧拉函数值,找出每一个大于等于该欧拉函数值的数,并且要求相加和最小. 题解:因为素数i的欧拉函数 ...

  7. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

  8. codeforces 414A A. Mashmokh and Numbers(素数筛)

    题目链接: A. Mashmokh and Numbers time limit per test 1 second memory limit per test 256 megabytes input ...

  9. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  10. POJ 3126 Prime Path (bfs+欧拉线性素数筛)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

随机推荐

  1. eclipse插件大全(官方)

    eclipse插件大全:http://marketplace.eclipse.org/metrics/successful_installs 各个版本插件: http://download.eclip ...

  2. 二叉树系列 - 二叉树的深度,例 [LeetCode]

    二叉树的深度的概念最值得注意的地方,在于 到"叶子"节点的距离. 一般来说,如果直接说“深度”,都是指最大深度,即最远叶子的距离. 这里放两道例题,最小深度和最大深度. 1. 二叉 ...

  3. ZOJ 3778 C - Talented Chef 水题

    LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3778 题意:有n道菜,每道菜需要\(a_i\)道工序,有m个锅可 ...

  4. 无废话JavaScript(下)

    五.函数式 这个可不是JavaScript的发明,它的发明人已经死了,而他的这个发明还在困扰着我们……如同爱迪生的灯泡还在照耀着我们. 其实函数式语言很简单,它就是一种与命令式语言同样“完备”的语言实 ...

  5. 利用Addon Domain和A记录使两个域名同时指向同一个网站

    今天碰到这样的需求:已有网站A.com, 以及新注册的域名B.net, 现需要将B.net指向与A.com相同的内容. 这里提出的方法是在空间后台添加Addon domain, 以及在域名B.net后 ...

  6. 安装JDK环境变量的配置

    设置环境变量 在java中需要设置三个环境变量(1.5之后不用再设置classpath了,但是个人强烈建议继续设置以保证向下兼容问题) JDK安装完成之后我们用来设置环境变量:右击”我的电脑“,选择” ...

  7. 海洋CMS v6.53 v6.54命令执行

    测试下载地址:https://pan.baidu.com/s/1jHQBKFk 至于分析实在是看的一脸懵逼就不累赘了.直接上exp POST /haiyang/upload/search.php HT ...

  8. 【读书笔记::深入理解linux内核】内存寻址

    我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开 ...

  9. 在C#中用MediaInfo获取视频或音频的属性

    MediaInfo是一个开源的获取视频或音频的信息的非常便利的工具,它本身就带有一个GUI界面,可以非常方便我们查看视频信息.但是,当我们写一些转码程序时,往往需要在程序中获取视频信息的时候. 以前我 ...

  10. PhantomJS、Selenium、Chrome驱动的mac版安装和配置

    PhantomJS(爬取动态页面需要用到) 基于webkit的javaScript API.提供了css选择器,提供了处理文件的I/O操作,支持Web标准.DOM操作.JSON.HTML5.Canva ...