Lamertian模型描述了当光源直接照射到粗糙物体表面时,反射光线的分布情况。在现实中,除了直接光照,还有来自周围环境的间接光照

直接照射到物体表面的光照,又称为局部光照

间接照射到物体表面的光照,又称为全局光照

左图中点x接收到周围环境的光线照射,来自周围表面的反射光照称为全局光照;右图中点x接收来自太阳光的直接照射,来自太阳发射的直接光照称为局部光照。

在现实环境中,全局光照的情况更为复杂,例如:

  • 半透明表面(Semi-transparent surfaces):光线可以穿过表面进行复杂的交互,如玻璃棱镜,可以改变光的波长;
  • 次表面散射(Sub-Surface Scattering):光线可以穿过子表面,在同一表面的不同方向反射,如皮肤;
  • 表面渗色(Surface bleeding):光线穿过表面,在介质中改变颜色到目标表面。

其他例子还有很多,全局光照会比局部光照效果更佳柔和自然。我们在前篇中所研究的Lambertain BRDF光照模型为局部光照模型,还欠缺了全局光照因素。

环境光照Ambient

在实时渲染中模拟全局环境光照还是有一定难度的,通常为了不使场景中在没有全局光照射的情况下呈现黑暗,可理想的认为环境光均匀分布在所有物体表面。

即环境光与位置\({p}\)和方向\({\omega_i}\)无关,在所有表面都呈现同一颜色,表示为:

\({L_i} = {l_sc_l}\)

其中,\({l_s}\)表示光照强度系数,\({c_l}\)表示光照颜色。

(未完待续,此处需补充双半球反射率\({\rho_{hh}}\))

Phong反射模型

Lamertian模型是粗糙表面的理想反射模型,当光线照射到光滑表面会产生高光,Phong反射模型(Phong reflection model,1973)是其中一类的有向光照的镜面反射模型。

根据光的反射定律:入射光线与反射光线成相同角度。

用\({l}\)表示入射光线,\({r}\)表示出射光线,\({n}\)表示物体表面法线,那么存在如下方程关系:

式①:\({r} = {al} + {bn}\)

上式中,\({a}\)和\({b}\)为常数项。对上式左右两边同乘\({n}\):

\({r \cdot n} = {al \cdot n} + {bn \cdot n}\)

得到式②:\({(1 - a)l \cdot n} = {b}\)

如果用\({n}^{\perp}\)表示与表面法线\({n}\)垂直的向量,那么\({l}\)与\({r}\)在\({n}^{\perp}\)上的投影应为相反的向量,\({r} = -{l}\):

\({r \cdot n^{\perp}} = {al \cdot n^{\perp}} + {bn \cdot n^{\perp}}\)

\({-l \cdot n^{\perp}} = {al \cdot n^{\perp}}\)

得:\({a} = -1\)

代入式①和式②中,可得\({r}\)的表达式:

\({r} = -{l} + {2(n \cdot l)n}\)

围绕在反射光线\({r}\)附近的反射辐射度应随\({\omega_o}\)与\({r}\)之间的夹角\({\alpha}\)的增加而减少。

Phong模型的镜面反射部分表示为\({\cos \alpha}^{e} = {r \cdot \omega_o}^{e}\),\(\alpha \in {[0, \frac{\pi}{2}]}\),\({\cos \alpha} \in {[0, 1]}\),\({e}\)与\(\alpha\)存在如下函数分布关系:

分布图中y轴代表\({e}\),x轴代表\(\alpha\),当\({e}\)增大时,随\(\alpha\)的增加而快速收敛。

至此可知Phong的BRDF高光项为:\({f_{r, s}(l, \omega_o)} = {k_s(r \cdot \omega_o)^{e}}\)

其中,\({k_s} \in [0, 1]\)表示为高光系数。

(未完待续)

PBR Step by Step( 五)Phong反射模型的更多相关文章

  1. PBR Step by Step(四)Lambertian反射模型

    光照可分为局部光照和全局光照. 局部光照:直接照射到物体表面的光照 全局光照:物体表面受周围环境影响的光照 左图中点x接收到周围环境的光线照射,来自周围表面的反射光照称为全局光照:右图中点x接收来自太 ...

  2. 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network - step by step

    Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In thi ...

  3. enode框架step by step之框架要实现的目标的分析思路剖析1

    enode框架step by step之框架要实现的目标的分析思路剖析1 enode框架系列step by step文章系列索引: 分享一个基于DDD以及事件驱动架构(EDA)的应用开发框架enode ...

  4. Step by step Dynamics CRM 2011升级到Dynamics CRM 2013

    原创地址:http://www.cnblogs.com/jfzhu/p/4018153.html 转载请注明出处 (一)检查Customizations 从2011升级到2013有一些legacy f ...

  5. EF框架step by step(7)—Code First DataAnnotations(1)

    Data annotation特性是在.NET 3.5中引进的,给ASP.NET web应用中的类提供了一种添加验证的方式.Code First允许你使用代码来建立实体框架模型,同时允许用Data a ...

  6. Step by Step

    数据库设计Step by Step篇目整理及下载地址 系列篇目 1. 数据库设计 Step by Step (1)——扬帆启航 2. 数据库设计 Step by Step (2)——数据库生命周期 3 ...

  7. WPF Step By Step 自定义模板

    WPF Step By Step 自定义模板 回顾 上一篇,我们简单介绍了几个基本的控件,本节我们将讲解每个控件的样式的自定义和数据模板的自定义,我们会结合项目中的具体的要求和场景来分析,给出我们实现 ...

  8. WPF Step By Step 系列 - 开篇 ·

    WPF Step By Step 系列 - 开篇 公司最近要去我去整理出一个完整的WPF培训的教程,我刚好将自己学习WPF的过程和经验总结整理成笔记的方式来讲述,这里就不按照书上面的东西来说了,书本上 ...

  9. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

随机推荐

  1. Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈

    LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...

  2. Python学习笔记(三十一)正则表达式

    ---恢复内容开始--- 摘抄自:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000 ...

  3. Qt undefined reference to ***

    错因:某个类声明了一个函数但是没有定义就直接使用.

  4. MongoDB - MongoDB CRUD Operations, Query Documents, Iterate a Cursor in the mongo Shell

    The db.collection.find() method returns a cursor. To access the documents, you need to iterate the c ...

  5. IO流-读取写入缓冲区

    例如FileReader和FileWriter在读取的时候是读一次或者写一次就请求磁盘,这样使用的时间非常的长,效率比较低,因此引入BufferedReader和BufferedWriter作为读取和 ...

  6. R2—《R in Nutshell》 读书笔记(连载)

    R in Nutshell 前言 例子(nutshell包) 本书中的例子包括在nutshell的R包中,使用数据,需加载nutshell包 install.packages("nutshe ...

  7. 【NOIP】普及组2009 细胞分裂

    [算法]数论 [题解]均分的本质是A整除B,A整除B等价于A的质因数是B的子集. 1.将m1分解质因数,即m1=p1^a1*p2^a2*...*pk^ak 所以M=m1^m2=p1^(a1*m2)*p ...

  8. oracle01--单表查询

    1. 基本(基础)查询 1.1. 基本查询语法 基本查询是指最基本的select语句. [语法] [知识点]如何使用工具进行查询 在plsql developer中打开查询窗口(执行sql语句): 执 ...

  9. Ajax请求数据与删除数据后刷新页面

    1.ajax异步请求数据后填入模态框 请求数据的按钮(HTML) <a class="queryA" href="javascript:void(0)" ...

  10. Java多线程学习(七)并发编程中一些问题

    本节思维导图: 关注微信公众号:"Java面试通关手册" 回复"Java多线程"获取思维导图源文件和思维导图软件. 多线程就一定好吗?快吗?? 并发编程的目的就 ...