mysql大数据量之limit优化
背景:当数据库里面的数据达到几百万条上千万条的时候,如果要分页的时候(不过一般分页不会有这么多),如果业务要求这么做那我们需要如何解决呢?
我用的本地一个自己生产的一张表有五百多万的表,来进行测试,表名为big_data;
首先我们看如下几条sql语句:
在这之前我们开启profiling来监测sql语句执行的情况。
set profiling=1;
1.查询从第10w条数据开始分页10条
2.查询从第20w条数据分页10条
3.查询从第30w条数据分页10条
3.查询从第300w条数据分页10条
3.查询从第500w条数据分页10条
我们可以看出查询从200w开始分页的都还比较快,但从500w开始速度就变的很慢了,这个是不太让人满意的。
mysql> select id,my_name from big_data limit 5000000,10;
+---------+------------+
| id | my_name |
+---------+------------+
| 5000001 | kwCwziqhNu |
| 5000002 | NLpqMMwaJv |
| 5000003 | kskUTLXDbx |
| 5000004 | PtAvBtpubZ |
| 5000005 | whsuShiuvX |
| 5000006 | TcDLWzHNQT |
| 5000007 | qHmnEkjsmh |
| 5000008 | UQrmluqvgr |
| 5000009 | UzKeqpEbtQ |
| 5000010 | SkuvSePMpq |
+---------+------------+
10 rows in set (2.34 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+--------------------------------------------------+
| 1 | 0.02591075 | select id,my_name from big_data limit 100000,10 |
| 2 | 0.05773150 | select id,my_name from big_data limit 200000,10 |
| 3 | 0.08253525 | select id,my_name from big_data limit 300000,10 |
| 4 | 1.38455375 | select id,my_name from big_data limit 3000000,10 |
| 5 | 2.34040775 | select id,my_name from big_data limit 5000000,10 |
+----------+------------+--------------------------------------------------+
5 rows in set, 1 warning (0.00 sec)
show profiles;
我们就如下两种解决方法:
(1)、通过判断id的范围来分页
select id,my_sn from big_data where id>5000000 limit 10;
也得到了分页的数据,但是我们发现如果id不是顺序的,也就是如果有数据删除过的话,那么这样分页数据就会不正确,这个是有缺陷的。
(2)、通过连接查询来分页
我们可以先查询500w条数据开始分页的那10个id,然后通过连接查询显示数据
mysql> select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 4500000,10) as tmp on tmp.id=b.id;
我们测试不同起始端的分页数据
mysql> select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 5000000,10) as tmp on tmp.id=b.id;
+---------+------------+
| id | my_name |
+---------+------------+
| 5000001 | kwCwziqhNu |
| 5000002 | NLpqMMwaJv |
| 5000003 | kskUTLXDbx |
| 5000004 | PtAvBtpubZ |
| 5000005 | whsuShiuvX |
| 5000006 | TcDLWzHNQT |
| 5000007 | qHmnEkjsmh |
| 5000008 | UQrmluqvgr |
| 5000009 | UzKeqpEbtQ |
| 5000010 | SkuvSePMpq |
+---------+------------+
10 rows in set (2.15 sec)
mysql> show profiles;
+----------+------------+------------------------------------------------------------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+------------------------------------------------------------------------------------------------------------------------------------+
| 1 | 0.02591075 | select id,my_name from big_data limit 100000,10 |
| 2 | 0.05773150 | select id,my_name from big_data limit 200000,10 |
| 3 | 0.08253525 | select id,my_name from big_data limit 300000,10 |
| 4 | 1.38455375 | select id,my_name from big_data limit 3000000,10 |
| 5 | 2.34040775 | select id,my_name from big_data limit 5000000,10 |
| 6 | 0.00004200 | reset query cache |
| 7 | 0.01999275 | select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 100000,10) as tmp on tmp.id=b.id |
| 8 | 0.03888825 | select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 200000,10) as tmp on tmp.id=b.id |
| 9 | 0.37394450 | select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 1000000,10) as tmp on tmp.id=b.id |
| 10 | 1.33475700 | select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 3000000,10) as tmp on tmp.id=b.id |
| 11 | 2.14759000 | select b.id,b.my_name from big_data as b inner join (select id from big_data order by id limit 5000000,10) as tmp on tmp.id=b.id |
如果怀疑有缓存的缘故我们可以清楚缓存后来查询
reset query cache;
show profile for query 3;//查看被记录的第三条sql语句的执行情况
可以看出两种方法查出来的数据都是一致的,但通过方法二的速度比之前单表查询的速度快了一些。
分析:因为mysql分页查询是先把分页之前数据都查询出来了,然后截取后把不是分页的数据给扔掉后得到的结果这样,所以数据量太大了后分页缓慢是可以理解的。
但是我们可以先把需要分页的id查询出来,因为id是主键id主键索引,查询起来还是快很多的,然后根据id连接查询对应的分页数据,可见并不是所有的连接查询都会比
单查询要慢,要依情况而定。
mysql大数据量之limit优化的更多相关文章
- MySQL大数据量分页性能优化
mysql大数据量使用limit分页,随着页码的增大,查询效率越低下. 测试实验 1. 直接用limit start, count分页语句, 也是我程序中用的方法: select * from p ...
- mysql大数据量使用limit分页,随着页码的增大,查询效率越低下
1. 直接用limit start, count分页语句, 也是我程序中用的方法: select * from product limit start, count当起始页较小时,查询没有性能问题 ...
- 【MYSQL】mysql大数据量分页性能优化
转载地址: http://www.cnblogs.com/lpfuture/p/5772055.html https://www.cnblogs.com/shiwenhu/p/5757250.html ...
- MySQL 大数据量使用limit分页,随着页码的增大,查询效率越低下。
数据表结构 CREATE TABLE `ad_keyword` ( `id` int(11) NOT NULL AUTO_INCREMENT, `plan_goods_id` int(11) DEFA ...
- 【1】MySQL大数据量分页查询方法及其优化
---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适应场景: 适用于数据量较少的情况(元组百/千 ...
- MySQL大数据量分页查询方法及其优化
MySQL大数据量分页查询方法及其优化 ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适 ...
- MySQL大数据量分页查询
mysql大数据量使用limit分页,随着页码的增大,查询效率越低下. 测试实验 1. 直接用limit start, count分页语句, 也是我程序中用的方法: select * from p ...
- mysql大数据量下的分页
mysql大数据量使用limit分页,随着页码的增大,查询效率越低下. 测试实验 1. 直接用limit start, count分页语句, 也是我程序中用的方法: select * from p ...
- MySQL 大数据量快速插入方法和语句优化
MySQL大数据量快速插入方法和语句优化是本文我们主要要介绍的内容,接下来我们就来一一介绍,希望能够让您有所收获! INSERT语句的速度 插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例 ...
随机推荐
- 分布式锁tair redis zookeeper,安全性
tair分布式锁实现:https://yq.aliyun.com/articles/58928 redis分布式锁:https://www.cnblogs.com/jianwei-dai/p/6137 ...
- MYSQL中的日期转换
MYSQL中的日期转换 网址: http://www.eygle.com/digest/2006/09/mysql_date_convert.html 对于每个类型拥有的值范围以及并且指定日期何时间值 ...
- 【hive】解析json格式字符串
(1)解析json中的单个属性 get_json_object(json_str,’$.xxx’/‘$[xxx]’) get_json_object函数第一个参数填写json对象变量(string) ...
- hdu 4770 13 杭州 现场 A - Lights Against Dudely 暴力 bfs 状态压缩DP 难度:1
Description Harry: "But Hagrid. How am I going to pay for all of this? I haven't any money.&quo ...
- bzip2压缩 解压缩
压缩/解压缩压缩/解压缩之后的文件名称 必须是bz2 首先是 -z 压缩文件-d 解压缩!
- LeetCode OJ:Regular Expression Matching(正则表达式匹配)
Implement regular expression matching with support for '.' and '*'. '.' Matches any single character ...
- HashMap resize代码详解(二)
关于其中的resize方法如下: final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = ( ...
- vue.js 源代码学习笔记 ----- core lifecycle
/* @flow */ import config from '../config' import Watcher from '../observer/watcher' import { mark, ...
- 理解 uncaughtException 和 domain 和 try catch 区别
文章 实践 uncaughtException 捕获的是全局的异常, 反应慢, 每个回调完成后才发出异常, 书写也麻烦 domain 可以捕获每个异常, 及时反馈, 并且书写简洁 但他们两个捕获的异常 ...
- modprobe lsmod
modprobe是linux的一个命令,可载入指定的个别模块,或是载入一组相依的模块.modprobe会根据depmod所产生的相依关系,决定要载入哪些模块.若在载入过程中发生错误,在modprobe ...