[SCOI2009]粉刷匠

题目描述

\(windy\)有 \(N\) 条木板需要被粉刷。 每条木板被分为 \(M\) 个格子。 每个格子要被刷成红色或蓝色。

\(windy\)每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。

如果\(windy\)只能粉刷 \(T\) 次,他最多能正确粉刷多少格子?

一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

输入输出格式

输入格式:

第一行包含三个整数,\(N ,M, T\)。

接下来有N行,每行一个长度为\(M\)的字符串,'\(0\)'表示红色,'\(1\)'表示蓝色。

输出格式:

包含一个整数,最多能正确粉刷的格子数。

输入输出样例

输入样例#1:

3 6 3
111111
000000
001100

输出样例#1:

16

说明

\(30\%\)的数据,满足 \(1 <= N,M <= 10 ; 0 <= T <= 100\) 。

\(100\%\)的数据,满足 \(1 <= N,M <= 50 ; 0 <= T <= 2500\) 。

题解

\(dp[i][j][k]\)表示第\(i\)块板已经刷完了前\(j\)块用了\(k\)次的最大价值;

我们会发现每个\(i\)都是独立的,所以转移时不去看\(i\),把转移想成每个独立的子问题。

\(dp[i][j][k]\)的转移:

我们可以枚举一个断点\(h\),使用一次粉刷机会从\(h+1\)到\(j\),价值为\(h+1\)到\(j\)的\(max(red+bule)\)。

\(dp[i][j][k]=max(dp[i][j][k],dp[i][h][k-1]+mx[i][h+1][j])\);

\(mx[i][l][r]\)为提前预处理第\(i\)块板\(l\)到\(r\)的 \(max(red+bule)\)。

最后直接跑分组背包统计答案。

code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#define N 55
#define R register
#define ll long long
using namespace std;
template<typename T>inline void read(R T &a){
R char c=getchar();R T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
int n,m,t,ans;
int dp[N][N][N],sum[2][N],mx[N][N][N],f[2505];
char s[N];
int main(){
read(n);read(m);read(t);
for(R int i=1;i<=n;i++){
scanf("%s",s+1);
sum[0][0]=sum[1][0]=0;
for(R int j=1;j<=m;j++){
sum[0][j]=sum[0][j-1]+(s[j]=='0');
sum[1][j]=sum[1][j-1]+(s[j]=='1');
}
for(R int j=1;j<=m;j++){
mx[i][j][j]=1;
for(R int k=j+1;k<=m;k++)
mx[i][j][k]=max(sum[0][k]-sum[0][j-1],sum[1][k]-sum[1][j-1]);
}
}
for(R int i=1;i<=n;i++)
for(R int j=1;j<=m;j++)
for(R int k=1;k<=m;k++)
for(R int h=0;h<j;h++)
dp[i][j][k]=max(dp[i][j][k],dp[i][h][k-1]+mx[i][h+1][j]);
for(R int i=1;i<=n;i++)
for(R int j=t;j>=0;j--)
for(R int k=0;k<=m;k++)
if(j-k>=0)f[j]=max(f[j],f[j-k]+dp[i][m][k]),ans=max(ans,f[j]);
printf("%d\n",ans);
return 0;
}

【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)的更多相关文章

  1. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  2. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  3. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  4. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

  5. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  6. BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1296 题意概括 有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝 ...

  7. 【Dp】Bzoj1296 [SCOI2009] 粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  8. 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)

    传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...

  9. BZOJ1296 [SCOI2009]粉刷匠 【dp】

    题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...

  10. bzoj1296 [SCOI2009]粉刷匠——背包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1296 对于不同木板之间,最终统计答案时做一个分组背包即可: 而要进行分组背包,就需要知道每个 ...

随机推荐

  1. Python入门之 字符串操作,占位符,比较大小 等

    Python  字符串 常用的操作 切片 左包括右不包括的原则 ________________ 比较字符串大小 eg: cmp("a",'b')   -1第一个比第二个小  0 ...

  2. 关于@property与@syntheszie的使用问题

    写在前面:在ARC大行其道的“现代化社会”,不少人不再对“完整的“OC”抱有它应该获得的尊重,于是浮躁成了代名词~~ 在使用ARC时,大家声明变量的过程中,往往使用@property来通过编译器,隐式 ...

  3. http协议简析(一)

    HTTP:hype-text transfer protocol,超文本传输协议,超文本(html)在网络间(电脑与电脑之间)传输过程中所遵循的一些规则. 两台电脑之间要实现数据传输的条件 1.两台电 ...

  4. mysql数据库优化总结 有图 有用

    对于一个以数据为中心的应用,数据库的好坏直接影响到程序的性能,因此数据库性能至关重要.一般来说,要保证数据库的效率,要做好以下四个方面的工作:数据库设计.sql语句优化.数据库参数配置.恰当的硬件资源 ...

  5. svm原理及opencv

    转自http://www.cnblogs.com/justany/archive/2012/11/23/2784125.html

  6. 一张图5分钟熟悉MarkDown的基本语法

    看到zealer上面有介绍MarkDown的,以前在老罗的发布会也听说过,说锤子便签支持MarkDown,但是不知道有什么用,现在来看看,确实不错. MarkDown的好处是让你可以专注于写字本身,而 ...

  7. easyui-tabs扩展根据自定义属性打开页签

    .增加扩展 <script type="text/javascript" > /** * @author {kexb} easyui-tab扩展根据id切换页面 */ ...

  8. 白盒测试实践--Day3 12/19/2017

    累计完成任务情况: 阶段内容 参与人 完成静态代码检查结果报告 小靳 完成JUnit脚本编写 小黄 完成CheckStyle检查 小靳 完成代码评审会议纪要和结果报告 小熊.小梁及其他 完成白盒测试用 ...

  9. idea 删除代码的注释

      搜索栏使用 正则表达式搜索 (/\*([^*]|[\r\n]|(\*+([^*/]|[\r\n])))*\*+/|[ \t]*//.*)   会搜索出来所有注释的代码 用空格replace替换掉就 ...

  10. NIOS II 自定义IP核编写基本框架

    关于自定义IP .接口 a.全局信号 时钟(Clk),复位(reset_n) b.avalon mm slave 地址(as_address) 片选(as_chipselect /as_chipsel ...