「LibreOJ β Round #4」多项式 (广义欧拉数论定理)
https://loj.ac/problem/525
题目描述
给定一个正整数 kkk,你需要寻找一个系数均为 0 到 k−1之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x)modk=0。你给出的多项式次数不能超过 60000,且最高次系数必须非 0。
输入格式
输入一行,包含一个正整数 k。
输出格式
若无解,则只输出一个整数 −1。否则首先输出一个整数 n 表示你寻找的多项式的次数,随后 n+1 个整数按照从低位到高位的顺序输出多项式的系数。
在此之后的输出将被忽略。
样例
样例输入
3
样例输出
4
0 1 2 2 1

即
≡
mod k
即
-
≡ 0 mod k
为了满足 n ≠ n mod φ(k) + φ(k) 且 n>=φ(k)
取n>=2*φ(k)
我取的n=2*φ(k)
那么 x^n - x^φ(k) ≡ 0 mod k
因为题目要求系数都为非负整数
x^n - x^φ(k) ≡ x^n - x^φ(k) + k*x^φ(k) mod k
即 x^n - x^φ(k) ≡ x^n + (k-1)* x^φ(k) mod k
所以多项式次数为n
n次方项系数为1,φ(k)次方项系数为k-1
注意k=1 时无解
#include<cmath>
#include<cstdio>
using namespace std;
int main()
{
int k,kk;
scanf("%d",&k);
if(k==) { printf("-1"); return ; }
kk=k;
int phi=kk,m=sqrt(kk);
for(int i=;i<=m;i++)
if(kk%i==)
{
phi=phi/i*(i-);
while(kk%i==) kk/=i;
}
if(kk>) phi=phi/kk*(kk-);
int n=phi<<;
printf("%d\n",n);
for(int i=;i<n;i++) printf("%d ",i==phi ? k- : );
printf("");
}
「LibreOJ β Round #4」多项式 (广义欧拉数论定理)的更多相关文章
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- LibreOJ #525. 「LibreOJ β Round #4」多项式
二次联通门 : LibreOJ #525. 「LibreOJ β Round #4」多项式 官方题解 : /* LibreOJ #525. 「LibreOJ β Round #4」多项式 由于会有多种 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
随机推荐
- EXT4.1表单提交(非AJAX)
Ext.require([ 'Ext.form.*', 'Ext.data.*' ]); Ext.onReady(function(){ Ext.apply(Ext.form.VTypes, { re ...
- ssh: Could not resolve hostname问题终于解决了?
1.如果系统为64位,无法启动启动hdfs: ./sbin/start-dfs.sh.并有以下错误: sed: -e expression #1, char 6: unknown option to ...
- The goal you specified requires a project to execute but there is no POM in this directory
[INFO] Scanning for projects... [INFO] ------------------------------------------------------------- ...
- 一次性无重复配置VS项目插件属性的方法
在VS中需要使用opencv开源库或mysql等数据库时,为了能使用开源库或数据库的语言,需要添加库文件和包含目录等等.然而直接在[解决方案管理器]-->属性中配置的话,写下一个项目(解决方案) ...
- [LeetCode] Search in Rotated Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
- 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆
题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...
- 【bzoj3518】点组计数 欧拉函数(欧拉反演)
题目描述 平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵).Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线.这里a,b,c是不同的3个点,其顺序无关紧要.(即(a,b ...
- 【刷题】洛谷 P4716 【模板】最小树形图
题目背景 这是一道模板题. 题目描述 给定包含 \(n\) 个结点, \(m\) 条有向边的一个图.试求一棵以结点 \(r\) 为根的最小树形图,并输出最小树形图每条边的权值之和,如果没有以 \(r\ ...
- Android 解决ScrollView嵌入ListView | GridView | ScrollView显示问题
一.ScrollView中嵌套ListView ScrollView和ListView都是滚动结构,很明显如果在ScrollView中加入ListView,可以预见性的知道,肯定会有显示/滚动的问题, ...
- Spring Boot系列教程二:创建第一个web工程 hello world
一.创建工程 创建名称为"springboot_helloworld"的spring boot工程, new->Spring Starter Project,直接上图 ...