Problem Description

Keke is currently studying engineering drawing courses, and the teacher has taught her how to find its volume through the three views of the part. But her brain doesn't work well that she can't find the volume of complex parts. So she needs your help.

To simplify the problem, the part is made up of cubes with side length 1, and the vertices of these cubes are all on the grid. Give you three 0/1 matrices, each representing each of the three views. 0 means that there is no projection of cubes at this position of the view; 1 means that there is a projection of cubes at this position of the view.

Now Keke wants you to help her find the volume of the part determined by the three views.

Input

There are mutiple test cases, the number of which is no more than 10. For each test case:

The first line of input contains three integers mx,my,mz(1≤mx,my,mz≤99)

, which represent the coordinate range of all possible cubes (i.e. all possible cubes are in the cuboid area whose body diagonal is from (1,1,1)

to (mx,my,mz)

).

Following input a 0/1 matrix with mx

lines and my

columns representing the front view, and the y

-th column of the x

-th row represents the projection of all the cubes in the front view such as (x,y,?)

.

Following input a 0/1 matrix with my

lines and mz

columns representing the side view, and the z

-th column of the y

-th row represents the projections of all the cubes in the side view such as (?,y,z)

.

Following input a 0/1 matrix with mz

lines and mx

columns representing the top view, and the x

-th column of the z

-th row represents the projection of all the cubes of the top view such as (x,?,z)

.

The '?

' in the above coordinates represents any integer. Numbers in the same line are separated by spaces. For more detailed input information, please see the sample

Output

For each test case:

The first line of output should contain an integer, representing the volume of the part determined by the three views. If the determined part is not unique, find the largest of all possible parts.

Keke's teacher promises that there is at least one part that satisfies the input.

Sample Input

5 6 4

1 1 1 1 1 1

0 0 0 1 0 1

0 0 0 1 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 1 1 0

1 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 1 1 1 1

Sample Output

17

解题思路:这道题就是给你三视图,叫你求体积;

(1)首先题给的这个正视图和侧视图不是真实图的正视图和侧视图,所以应该翻转一下;

 

(2)此时就暴力的枚举每个小块,如果都为1,那么就ans++;这样不会出现重复的情况;

代码如下:

 #include<iostream>
#include<stdio.h>
using namespace std; int m , n , k;
int x[][];
int y[][];
int z[][];
int tpx[][];
int tpy[][];
int ans = ;
int main()
{
while(scanf("%d%d%d",&m,&n,&k)!=EOF)
{
ans = ;
for(int i = ; i <= m ; i++)
{
for(int j = ; j <= n ; j++)
{
cin>>x[i][j];
}
}
for(int i = ; i <= n ;i++)
{
for(int j = ;j <= k ;j++)
{
cin>>y[i][j];
}
}
for(int i = ; i <= k ; i ++)
{
for(int j = ; j <= m ;j++)
{
cin>>z[i][j];
}
} for(int i = ; i <= n ; i++)
{
for(int j = ; j <= m ;j++)
{
tpx[i][j] = x[j][n-i+] ; //向左翻转
}
} for(int i = ; i <= n ;i++)
{
for(int j = ;j <= k ;j++)
{
tpy[i][j] = y[n-i+][j]; //上下翻转
}
}
for(int i = ; i <= m ;i++)
{
for(int j = ; j <= n ;j++)
{
for(int l = ; l <= k ;l++)
{
if(tpx[j][i]==&&z[l][i]==&&tpy[j][l]==)
{
ans++;
}
}
}
} cout<<ans<<endl; }
}

2019中山大学程序设计竞赛(重现赛) Clumsy Keke的更多相关文章

  1. 2019中山大学程序设计竞赛 Triangle

    今天水了一发hdu上的中山校赛 这个题交了将近十遍才过...... 就是说给 n 个木棍,如果能找出3个能组成三角形的木棍就输出yes 反之输出no 乍一看很简单 一个排序遍历一遍就好了 但是n值太大 ...

  2. 2019中山大学程序设计竞赛-Monitor

    题目地址 题目大意:给你一个n*m的矩形,在这个矩形内告诉你p个矩形(左下角和右上角坐标),问你q个问题,每次也是给你一个矩形(左下角和右上角坐标),问你每个矩形是否可以被开始给的p个矩形完全覆盖. ...

  3. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 G - 彩虹岛套娃

    题目描述 俄罗斯套娃是俄罗斯特产的木制玩具,一般由多个一样图案的空心木娃娃一个套一个组成,最多可达十多个,通常为圆柱形,底部平坦可以直立.颜色有红色,蓝色,绿色,紫色等.最普通的图案是一个穿着俄罗斯民 ...

  4. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 H - 圣诞节糖果

    题目描述 圣诞节临近,彩虹岛的黑心商人

  5. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 F - 打铁的箱子

    题目描述 作为彩虹岛上最擅长打铁的人,

  6. 长安大学第四届ACM-ICPC“迎新杯”程序设计竞赛-重现赛 D - 新卡片游戏

    题目描述

  7. 第十四届浙江财经大学程序设计竞赛重现赛--A-A Sad Story

    链接:https://www.nowcoder.com/acm/contest/89/A 来源:牛客网 1.题目描述 The Great Wall story of Meng Jiangnv’s Bi ...

  8. “浪潮杯”第九届山东省ACM大学生程序设计竞赛重现赛 C-Cities

    题目描述:There are n cities in Byteland, and the ith city has a value ai. The cost of building a bidirec ...

  9. 牛客网 湖南大学2018年第十四届程序设计竞赛重现赛 A game

    链接:https://www.nowcoder.com/acm/contest/125/A来源:牛客网 Tony and Macle are good friends. One day they jo ...

随机推荐

  1. Spring IOC基础

    2.1.1 IOC是什么IOC—Inversion of Control,即“控制反转”,不是什么技术,而是一种设计思想.在Java开发中,IOC意味着将你设计好的对象交给容器控制,而不是传统的在你的 ...

  2. Centos6、7 PHP5.4 5.5 5.6安装

    https://www.mojowill.com/geek/howto-install-php-5-4-5-5-or-5-6-on-centos-6-and-centos-7/ https://blo ...

  3. python gun readline

    https://github.com/ludwigschwardt/python-gnureadline

  4. Linux实战教学笔记53:开源虚拟化KVM(一)搭建部署与概述

    一,KVM概述 1.1 虚拟化概述 在计算机技术中,虚拟化意味着创建设备或资源的虚拟版本,如服务器,存储设备,网络或者操作系统等等 [x] 虚拟化技术分类: 系统虚拟化(我们主要讨论的反向) 存储虚拟 ...

  5. Blending

    [Blending] Blending is used to make transparent objects. When graphics are rendered, after all shade ...

  6. cdoj31-饭卡(card) (01背包)

    http://acm.uestc.edu.cn/#/problem/show/31 饭卡(card) Time Limit: 3000/1000MS (Java/Others)     Memory ...

  7. JAVA 定时器的三种方法

    /** * 普通thread * 这是最常见的,创建一个thread,然后让它在while循环里一直运行着, * 通过sleep方法来达到定时任务的效果.这样可以快速简单的实现,代码如下: * @au ...

  8. Hibernate中Session与本地线程绑定

    ------------------siwuxie095 Hibernate 中 Session 与本地线程绑定 1.Session 类似于 JDBC 的连接 Connection 2.Session ...

  9. python-nmap模块常用方法说明

    一.模块常用方法说明 本节介绍python-nmap模块的两个常用类,一个为PortScanner()类,实现一个nmap工具的端口扫描功能封装:另一个为PortScannerHostDict()类, ...

  10. Mule ESB 安装基本配置要求

    Hardware Requirements* 2GHz, dual-core CPU, or 2 virtual CPUs in virtualized environments 2GB of RAM ...