这个题还有一些其他的做法,以后再补,先记一下三模数$NTT$的方法。

发现这个题不取模最大的答案不会超过$10^5 \times 10^9 \times 10^9 = 10^{23}$,也就是说我们可以取三个满足$NTT$性质的模数先算然后再合并起来。

比如三个模数可以分别取$998244353, 1004535809, 469762049$。

那么我们现在要做的就是合并三个同余方程:

$$x \equiv a_1(\mod P_1)$$

$$x \equiv a_2(\mod P_2)$$

$$x \equiv a_3(\mod P_3)$$

直接上$crt$的话会爆$long \ long$,我们需要一些其他技巧。

先用$crt$合并前两个方程,记

$$t = a_1P_2 \times inv(P_2, P_1) + a_2P_1 \times inv(P_1, P_2) $$

相当于

$$x \equiv t (\mod M = P_1P_2)$$

我们设$x = kM + t$,代入第三个方程,

$$kM + t \equiv a_3(\mod P_3)$$

可以解

$$k \equiv (a_3 - t) \times inv(M, P_3) (\mod P_3)$$

最后代回去算出$kM + t$即可。

在计算$t$的时候需要快速乘。

时间复杂度$O(nlogn)$。

注意到几个逆元没有必要计算多次,可以节省大量常数;用$O(1)$快速乘也可以大大加快速度。

Code:

// luogu-judger-enable-o2
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 3e5 + ;
const ll Mod[] = {998244353LL, 1004535809LL, 469762049LL}; int n, m, lim = , pos[N];
ll a[N], b[N], tmp[N], ans[][N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for (; ch > '' || ch < ''; ch = getchar())
if (ch == '-') op = -;
for (; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} template <typename T>
inline void swap(T &x, T &y) {
T t = x; x = y; y = t;
} inline ll fmul(ll x, ll y, ll P) {
ll res = 0LL;
for (; y; y >>= ) {
if (y & ) res = (res + x) % P;
x = (x + x) % P;
}
return res;
} inline ll fpow(ll x, ll y, ll P) {
ll res = 1LL;
/* for (; y > 0; y >>= 1) {
if (y & 1) res = fmul(res, x, P);
x = fmul(x, x, P);
} */ for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
} return res;
} inline ll getInv(ll x, ll y) {
return fpow(x % y, y - , y);
} inline void prework() {
int l = ;
for (; lim <= n + m; lim <<= , ++l);
for (int i = ; i < lim; i++)
pos[i] = (pos[i >> ] >> ) | ((i & ) << (l - ));
} inline void ntt(ll *c, int opt, ll P) {
for (int i = ; i < lim; i++)
if (i < pos[i]) swap(c[i], c[pos[i]]);
for (int i = ; i < lim; i <<= ) {
ll wn = fpow(, (P - ) / (i << ), P);
if (opt == -) wn = fpow(wn, P - , P);
for (int len = i << , j = ; j < lim; j += len) {
ll w = 1LL;
for (int k = ; k < i; k++, w = w * wn % P) {
ll x = c[j + k], y = w * c[j + k + i] % P;
c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
}
}
} if (opt == -) {
ll inv = getInv(lim, P);
for (int i = ; i < lim; i++) c[i] = c[i] * inv % P;
}
} inline void solve(int id) {
for (int i = ; i < lim; i++)
tmp[i] = b[i] % Mod[id], ans[id][i] = a[i] % Mod[id];
ntt(tmp, , Mod[id]), ntt(ans[id], , Mod[id]);
for (int i = ; i < lim; i++) ans[id][i] = ans[id][i] * tmp[i] % Mod[id];
ntt(ans[id], -, Mod[id]);
} inline ll get(int k, ll P) {
ll M = (Mod[] * Mod[]);
ll t1 = fmul(ans[][k] * Mod[] % M, getInv(Mod[], Mod[]), M);
ll t2 = fmul(ans[][k] * Mod[] % M, getInv(Mod[], Mod[]), M);
ll t = (t1 + t2) % M;
ll invM = getInv(M, Mod[]), c = t;
t = (ans[][k] - t % Mod[] + Mod[]) % Mod[];
t = t * invM % Mod[];
return ((M % P) * (t % P) % P + c % P) % P;
} int main() {
ll P;
read(n), read(m), read(P);
for (int i = ; i <= n; i++) {
read(a[i]);
a[i] %= P;
}
for (int i = ; i <= m; i++) {
read(b[i]);
b[i] %= P;
} prework();
for (int i = ; i < ; i++) solve(i); /* for (int i = 0; i < 3; i++, printf("\n"))
for (int j = 0; j < lim; j++)
printf("%lld ", ans[i][j]); */ for (int i = ; i <= n + m; i++)
printf("%lld%c", get(i, P), i == (n + m) ? '\n' : ' '); return ;
}

Luogu 4245 【模板】任意模数NTT的更多相关文章

  1. 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)

    题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...

  2. [题解] Luogu P4245 [模板]任意模数NTT

    三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说 ...

  3. 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)

    题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...

  4. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  5. [洛谷P4245]【模板】任意模数NTT

    题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...

  6. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  7. 任意模数NTT

    任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...

  8. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

  9. 【知识总结】多项式全家桶(三)(任意模数NTT)

    经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...

  10. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

随机推荐

  1. FPGA的CNN加速,你怎么看?

    网上对于FPGACNN加速的研究已经很多了,神经网络的硬件加速似乎已经满大街都是了,这里我们暂且不讨论谁做的好谁做的不好,我们只是根据许许多多的经验来总结一下实现硬件加速,需要哪些知识,考虑哪些因素. ...

  2. 详细讲解删除SQL Server日志的具体方法

    一: 删除LOG 1:分离数据库 企业管理器->服务器->数据库->右键->分离数据库 2:删除LOG文件 3:附加数据库 企业管理器->服务器->数据库-> ...

  3. Nginx RTMP 模块 nginx-rtmp-module 指令详解

    译序:截至 Jul 8th,2013 官方公布的最新 Nginx RTMP 模块 nginx-rtmp-module 指令详解.指令Corertmp语法:rtmp { ... }上下文:根描述:保存所 ...

  4. [Java][Web]解决 Request 的乱码

    解决 get 提交的乱码 (手工处理) String username = request.getParameter("username"); username = new Str ...

  5. IT运维的定义

      IT运维是IT管理的核心和重点部分,也是内容最多.最繁杂的部分,该阶段主要用于IT部门内部日常运营管理,涉及的对象分成两大部分,即IT业务系统和运维人员,该阶段的管理内容又可细分为七个子系统:   ...

  6. python redis 发布订阅 实现 RPC同步

    工作中用到的场景是,python主程序发布消息到Redis,然后停住等待Redis上订阅的Response.等待过程是阻塞的,相当于把异步通信封装成同步通信,类似于Java的RPC. RPC封装的代码 ...

  7. 多个else if语句

    public class demo { public static void main(String[] args) { boolean examIsDone = true; int score = ...

  8. Oracle ASM操作管理

    查看ASM磁盘情况 SQL> select group_number,disk_number,mount_status,header_status,mode_status,state,failg ...

  9. RSA_JS_PHP加密解密

    root@DESKTOP-I4OIMJC /cygdrive/e/html/RSA_JS_PHP/openssl/bin # ./openssl.exe OpenSSL> genrsa -out ...

  10. C#中StreamReader读取中文出现乱码

    转自yhrun原文C#中StreamReader读取中文出现乱码 原因是自Windows 2000之后的操作系统在文件处理时默认编码采用Unicode 所以.NET文件的默认编码也是Unicode.除 ...