第一部分:KMP算法的理解(转:http://kb.cnblogs.com/page/176818/)

  字符串匹配是计算机的基本任务之一。

  举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

  许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

  这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

  1.

  首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

  2.

  因为B与A不匹配,搜索词再往后移。

  3.

  就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

  4.

  接着比较字符串和搜索词的下一个字符,还是相同。

  5.

  直到字符串有一个字符,与搜索词对应的字符不相同为止。

  6.

  这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

  7.

  一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

  8.

  怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

  9.

  已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

  因为 6 - 2 等于4,所以将搜索词向后移动4位。

  10.

  因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

  11.

  因为空格与A不匹配,继续后移一位。

  12.

  逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

  13.

  逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

  14.

  下面介绍《部分匹配表》是如何产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

  15.

  "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

  16.

  "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

第二部分:KMP算法的实现

字符串匹配的KMP算法(如何实现还需静下心来细看)的更多相关文章

  1. Luogu 3375 【模板】KMP字符串匹配(KMP算法)

    Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...

  2. 字符串匹配的 KMP算法

    一般字符串匹配过程 KMP算法是字符串匹配算法的一种改进版,一般的字符串匹配算法是:从主串(目标字符串)和模式串(待匹配字符串)的第一个字符开始比较,如果相等则继续匹配下一个字符, 如果不相等则从主串 ...

  3. 字符串匹配的kmp算法 及 python实现

    一:背景 给定一个主串(以 S 代替)和模式串(以 P 代替),要求找出 P 在 S 中出现的位置,此即串的模式匹配问题. Knuth-Morris-Pratt 算法(简称 KMP)是解决这一问题的常 ...

  4. HDU 1711 Number Sequence (字符串匹配,KMP算法)

    HDU 1711 Number Sequence (字符串匹配,KMP算法) Description Given two sequences of numbers : a1, a2, ...... , ...

  5. 字符串匹配(KMP 算法 含代码)

    主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知 ...

  6. 实现字符串匹配的KMP算法

    KMP算法是Knuth-Morris-Pratt算法的简称,它主要用于解决在一个长字符串S中匹配一个较短字符串s. 首先我们从整体来把我这个算法的思想. 字符串匹配的朴素算法: 我们容易想到朴素算法, ...

  7. 字符串匹配的KMP算法

    ~~~摘录 来源:阮一峰~~~ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串”BBC ABCDAB ABCDABCDABDE”,我想知道,里面是否包含另一个字符串”ABCDABD”? 许 ...

  8. 字符串匹配的KMP算法详解及C#实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

  9. 字符串匹配与KMP算法实现

    >>字符串匹配问题 字符串匹配问题即在匹配串中寻找模式串是否出现, 首先想到的是使用暴力破解,也就是Brute Force(BF或蛮力搜索) 算法,将匹配串和模式串左对齐,然后从左向右一个 ...

随机推荐

  1. 【51Nod1386】双马尾机器人Description 解题报告

    [51Nod1386]双马尾机器人Description ​ 给定\(n\)和\(k\),我们要在\(1,2,3,...,n\)中选择若干的数,每一种选择的方案被称为选数方案. ​ 我们定义一种选数方 ...

  2. ping: unknown host 解决办法

    如果ping命令返回如下错误,那主要的可能性就是系统的DNS设置有误. [root@CentOS5 ~]# ping www.sina.com.cn ping: unknown host www.si ...

  3. Codeforces Round #546 (Div. 2) ABCDE 题解

    1136A: 题意:一本书有n个章节,每个章节的分别在li到ri页,小明读完书后将书折在第k页,问还有多少章节没有读 题解:控制k在li~ri的范围内后输出n-i即可 #include <set ...

  4. ural 1297 后缀数组 最长回文子串

    https://vjudge.net/problem/URAL-1297 题意: 给出一个字符串求最长回文子串 代码: //论文题,把字符串反过来复制一遍到后边,中间用一个没出现的字符隔开,然后就是枚 ...

  5. python---tornado补充(异步非阻塞)

    一:正常访问(同一线程中多个请求是同步阻塞状态) import tornado.ioloop import tornado.web import tornado.websocket import da ...

  6. HTML+CSS基础小笔记再整理

    1. font的两个必须要写的:font-size 和 font-family text-indent 首行缩进(em)1em=一个文字大小 text-algin 对齐方式:left.center.r ...

  7. Python进行数据分析(二)MovieLens 1M 数据集

    # -*- coding: utf-8 -*- """ Created on Thu Sep 21 12:24:37 2017 @author: Douzi " ...

  8. Productivity tips, tricks and hacks for academics (2015 edition)

    Productivity tips, tricks and hacks for academics (2015 edition) Contents Jump to: My philosophy: Op ...

  9. 【BZOJ】1798: [Ahoi2009]Seq 维护序列seq 线段树多标记(区间加+区间乘)

    [题意]给定序列,支持区间加和区间乘,查询区间和取模.n<=10^5. [算法]线段树 [题解]线段树多重标记要考虑标记与标记之间的相互影响. 对于sum*b+a,+c直接加上即可. *c后就是 ...

  10. vps建站教程 CentOS6如何安装配置FTP服务器

    通过之前的几篇文章,我们都知道了如何配置PHP环境,也知道如何保护我们的vps以及如何绑定多个域名建设多个网站.有时候我们为了让我们的朋友也能用我们的vps建站又不想给他们太多权限,有时候我们想要当个 ...