题解

跟随小迪学姐的步伐,学习一下数论

小迪学姐太巨了!

这道题的式子很好推嘛

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) [gcd(\frac{\phi(i)}{d},\frac{\phi(j)}{d}) == 1]\)

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) \sum_{t | \frac{\phi(i)}{d},\frac{\phi(j)}{d}} \mu(t)\)

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{T|\phi(i),\phi(j)} \sum_{d|T}\phi(d)\mu(\frac{T}{d})\)

设\(g(T) = \sum_{d|T}\phi(d)\mu(\frac{T}{d})\)

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{T|\phi(i),\phi(j)} g(T)\)

设\(f(T) = \sum_{i = 1}^{n} \phi(i) == T\)

那么最后的答案就是

\(\sum_{T = 1}^{n} g(T) [\sum_{T|k} f(k)]^2\)

复杂度\(O(n \log n)\)

代码

#include <bits/stdc++.h>
#define MAXN 2000005
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int T,N;
int64 phi[MAXN],mu[MAXN],f[MAXN],g[MAXN];
bool nonprime[MAXN];
int prime[MAXN],tot;
void Solve() {
read(N);
int64 ans = 0;
memset(f,0,sizeof(f));
for(int i = 1 ; i <= N ; ++i) f[phi[i]]++;
for(int i = 1 ; i <= N ; ++i) {
int64 s = 0;
int t = i;
while(t <= N) s += f[t],t += i;
ans += g[i] * s * s;
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(T);
mu[1] = 1;
phi[1] = 1;
for(int i = 2 ; i <= 2000000 ; ++i) {
if(!nonprime[i]) {
prime[++tot] = i;
phi[i] = i - 1;
mu[i] = -1;
}
for(int j = 1 ; j <= tot ; ++j) {
if(prime[j] > 2000000 / i) break;
nonprime[i * prime[j]] = 1;
if(i % prime[j] == 0) phi[i * prime[j]] = phi[i] * prime[j],mu[i * prime[j]] = 0;
else phi[i * prime[j]] = phi[i] * (prime[j] - 1),mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1 ; i <= 2000000 ; ++i) {
int t = i;
while(t <= 2000000) {
g[t] += phi[i] * mu[t / i];
t += i;
}
}
while(T--) {
Solve();
}
return 0;
}

【51nod】1594 Gcd and Phi的更多相关文章

  1. 【51nod】2026 Gcd and Lcm

    题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们 ...

  2. 【51nod】1602 矩阵方程的解

    [51nod]1602 矩阵方程的解 这个行向量显然就是莫比乌斯函数啦,好蠢的隐藏方法= = 然后我们尝试二分,二分的话要求一个这个东西 \(H(n) = \sum_{i = 1}^{n} \mu(i ...

  3. 【51nod】1634 刚体图

    [51nod]1634 刚体图 给一个左边n个点右边m个点二分图求合法的连通图个数,每条边选了之后会带来价值乘2的贡献 类似城市规划那道题的计数 设\(g[i][j]\)为左边\(i\)个点,右边\( ...

  4. 【51nod】1407 与与与与

    [51nod]1407 与与与与 设\(f(x)\) 为\(A_{i} \& x == x\)的\(A_{i}\)的个数 设\(g(x)\)为\(x\)里1的个数 \(\sum_{i = 0} ...

  5. 【51nod】1776 路径计数

    [51nod]1776 路径计数 我们先把前两种数给排好,排好之后会有\(a + b + 1\)个空隙可以填数,我们计算有\(k\)个空隙两端都是相同字母的方案数 可以用枚举把第二种数分成几段插进去来 ...

  6. 【51nod】2622 围绕着我们的圆环

    [51nod] 2622 围绕着我们的圆环 kcz出的一道比赛题 第一次写带修改的线性基 ps:我觉得我计数计的好麻烦 首先是这个可以认为第二个矩阵是\(q\)个\(s\)位数,如果这\(q\)个数的 ...

  7. 【51nod】2564 格子染色

    [51nod]2564 格子染色 这道题原来是网络流-- 感觉我网络流水平不行-- 这种只有两种选择的可以源点向该点连一条容量为b的边,该点向汇点连一条容量为w的边,如果割掉了b证明选w,如果割掉了w ...

  8. 【51nod】2027 期望问题

    [51nod]2027 期望问题 %%%zsy 看不懂题解的垃圾选手在zsy大佬的讲解下终于知道了这道题咋做-- 先把所有\(a\)从大到小排序 设\(f_{i}\)为前\(i\)个数组成的排列的值, ...

  9. 【51nod】2591 最终讨伐

    [51nod]2591 最终讨伐 敲51nod是啥评测机啊,好几次都编译超时然后同一份代码莫名奇妙在众多0ms中忽然超时 这道题很简单就是\(M\)名既被诅咒也有石头的人,要么就把石头给没有石头被诅咒 ...

随机推荐

  1. bzoj 1879 状压dp

    879: [Sdoi2009]Bill的挑战 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 852  Solved: 435[Submit][Status ...

  2. discuz开发,登录次数过多,锁定解决方法

    到数据库里的表找到pre_common_failedlogin 和pre_ucenter_failedlogins清空里面的内容即可. truncate table pre_common_failed ...

  3. hashlib模块--加密

    用于加密相关的操作,3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法 import hashlib m = ha ...

  4. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

  5. OpenCV---Numpy数组的使用以及创建图片

    一:对头像的所有像素进行访问,并UI图像进行像素取反 (一)for循环取反 import cv2 as cv import numpy as np def access_pixels(image): ...

  6. CCD与CMOS的区别

    我们在购买相机或是摄像机时,都会看到使用CMOS镜头或是CCD镜头,那么CCD与CMOS是什么意思呢,CCD与CMOS的区别是什么?首先,让我们了解CCD与CMOS的意思. CCDCCD使用一种高感光 ...

  7. 用js实现千位分隔符

    function mm(num) { return num && num .toString() .replace(/(\d)(?=(\d{3})+\.)/g, function($0 ...

  8. Atcoder #014 agc014_C BFS

    LINK 题意:给定起点和最大操作次数$k$,地图'#'为上锁房间, 每次可以走$k$步,并任意解锁$k$个房间,问到达地图边界的最小次数. 思路:其实上锁与否并没有关系,因为先把$k$步走的次数用完 ...

  9. mysql 修改密码的几种方式

    第一种方式: 最简单的方法就是借助第三方工具Navicat for MySQL来修改,方法如下: 1.登录mysql到指定库,如:登录到test库. 2.然后点击上方“用户”按钮. 3.选择要更改的用 ...

  10. 自己封装的ASP.NET的MYSQL的数据库操作类

    /** * 作者:牛腩 * 创建时间:2010年3月7日17时35分 * 类说明:对MYSQL数据库的操作类 */ using System; using System.Data; using MyS ...