题解

跟随小迪学姐的步伐,学习一下数论

小迪学姐太巨了!

这道题的式子很好推嘛

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) [gcd(\frac{\phi(i)}{d},\frac{\phi(j)}{d}) == 1]\)

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) \sum_{t | \frac{\phi(i)}{d},\frac{\phi(j)}{d}} \mu(t)\)

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{T|\phi(i),\phi(j)} \sum_{d|T}\phi(d)\mu(\frac{T}{d})\)

设\(g(T) = \sum_{d|T}\phi(d)\mu(\frac{T}{d})\)

\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{T|\phi(i),\phi(j)} g(T)\)

设\(f(T) = \sum_{i = 1}^{n} \phi(i) == T\)

那么最后的答案就是

\(\sum_{T = 1}^{n} g(T) [\sum_{T|k} f(k)]^2\)

复杂度\(O(n \log n)\)

代码

#include <bits/stdc++.h>
#define MAXN 2000005
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int T,N;
int64 phi[MAXN],mu[MAXN],f[MAXN],g[MAXN];
bool nonprime[MAXN];
int prime[MAXN],tot;
void Solve() {
read(N);
int64 ans = 0;
memset(f,0,sizeof(f));
for(int i = 1 ; i <= N ; ++i) f[phi[i]]++;
for(int i = 1 ; i <= N ; ++i) {
int64 s = 0;
int t = i;
while(t <= N) s += f[t],t += i;
ans += g[i] * s * s;
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(T);
mu[1] = 1;
phi[1] = 1;
for(int i = 2 ; i <= 2000000 ; ++i) {
if(!nonprime[i]) {
prime[++tot] = i;
phi[i] = i - 1;
mu[i] = -1;
}
for(int j = 1 ; j <= tot ; ++j) {
if(prime[j] > 2000000 / i) break;
nonprime[i * prime[j]] = 1;
if(i % prime[j] == 0) phi[i * prime[j]] = phi[i] * prime[j],mu[i * prime[j]] = 0;
else phi[i * prime[j]] = phi[i] * (prime[j] - 1),mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1 ; i <= 2000000 ; ++i) {
int t = i;
while(t <= 2000000) {
g[t] += phi[i] * mu[t / i];
t += i;
}
}
while(T--) {
Solve();
}
return 0;
}

【51nod】1594 Gcd and Phi的更多相关文章

  1. 【51nod】2026 Gcd and Lcm

    题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们 ...

  2. 【51nod】1602 矩阵方程的解

    [51nod]1602 矩阵方程的解 这个行向量显然就是莫比乌斯函数啦,好蠢的隐藏方法= = 然后我们尝试二分,二分的话要求一个这个东西 \(H(n) = \sum_{i = 1}^{n} \mu(i ...

  3. 【51nod】1634 刚体图

    [51nod]1634 刚体图 给一个左边n个点右边m个点二分图求合法的连通图个数,每条边选了之后会带来价值乘2的贡献 类似城市规划那道题的计数 设\(g[i][j]\)为左边\(i\)个点,右边\( ...

  4. 【51nod】1407 与与与与

    [51nod]1407 与与与与 设\(f(x)\) 为\(A_{i} \& x == x\)的\(A_{i}\)的个数 设\(g(x)\)为\(x\)里1的个数 \(\sum_{i = 0} ...

  5. 【51nod】1776 路径计数

    [51nod]1776 路径计数 我们先把前两种数给排好,排好之后会有\(a + b + 1\)个空隙可以填数,我们计算有\(k\)个空隙两端都是相同字母的方案数 可以用枚举把第二种数分成几段插进去来 ...

  6. 【51nod】2622 围绕着我们的圆环

    [51nod] 2622 围绕着我们的圆环 kcz出的一道比赛题 第一次写带修改的线性基 ps:我觉得我计数计的好麻烦 首先是这个可以认为第二个矩阵是\(q\)个\(s\)位数,如果这\(q\)个数的 ...

  7. 【51nod】2564 格子染色

    [51nod]2564 格子染色 这道题原来是网络流-- 感觉我网络流水平不行-- 这种只有两种选择的可以源点向该点连一条容量为b的边,该点向汇点连一条容量为w的边,如果割掉了b证明选w,如果割掉了w ...

  8. 【51nod】2027 期望问题

    [51nod]2027 期望问题 %%%zsy 看不懂题解的垃圾选手在zsy大佬的讲解下终于知道了这道题咋做-- 先把所有\(a\)从大到小排序 设\(f_{i}\)为前\(i\)个数组成的排列的值, ...

  9. 【51nod】2591 最终讨伐

    [51nod]2591 最终讨伐 敲51nod是啥评测机啊,好几次都编译超时然后同一份代码莫名奇妙在众多0ms中忽然超时 这道题很简单就是\(M\)名既被诅咒也有石头的人,要么就把石头给没有石头被诅咒 ...

随机推荐

  1. Codeforce 633.C Spy Syndrome 2

    C. Spy Syndrome 2 time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Kubernetes Deployment滚动升级

    我们k8s集群使用的是1.7.7版本的,该版本中官方已经推荐使用Deployment代替Replication Controller(rc)了,Deployment继承了rc的全部功能外,还可以查看升 ...

  3. K8S Link

    https://www.cnblogs.com/linuxk/p/9783510.html https://www.cnblogs.com/fengzhihai/p/9851470.html

  4. centos 7 pdo

    在windows本机上测试好的Thinkphp5代码部署到centos7阿里云主机上面就提示class pdo not found,网上搜索了一大堆终于解决了.不过隔了这么几个小时详细的步骤就有些忘记 ...

  5. 【Android】完善Android学习(七:API 4.0.3)

    备注:之前Android入门学习的书籍使用的是杨丰盛的<Android应用开发揭秘>,这本书是基于Android 2.2API的,目前Android已经到4.4了,更新了很多的API,也增 ...

  6. Python学习笔记(补充)Split 用法

    >>> u = "www.doiido.com.cn" #使用默认分隔符 >>> print u.split() ['www.doiido.co ...

  7. [Luogu 2023] AHOI2009 维护序列

    [Luogu 2023] AHOI2009 维护序列 恕我冒昧这和线段树模板二有个琴梨区别? #include <cstdio> int n,m; long long p; class S ...

  8. HDU 1034 Candy Sharing Game (模拟)

    题目链接 Problem Description A number of students sit in a circle facing their teacher in the center. Ea ...

  9. videojs做直播、弹幕

    从上一年开始,我们开始接触直播,现在直播成本真的很低,很多CDN供应商都有提供,本文只是大概讲述播放器这个话题. 开始调研 播放格式,我挑了三种.分别是HLS,RTMP,HTTP-FLV. 下面简单说 ...

  10. css预处理scss环境配置

    css 预处理器 CSS 预处理器用一种专门的编程语言,进行 Web css编码,然后再编译成正常的 CSS 文件,以供项目使用:说简单点就是在某个环境下写css 可以写变量.表达式.嵌套等,在通过该 ...