一类适合初学者的DP:最大子段和与最大子矩阵
最近在水简单DP题,遇到了两道层层递进的DP题,于是记录一下
一、最大子段和
题意:
给出一个长度为n(n<=1e5)的序列,求连续子段的最大值
比如说2 3 -4 5 的最大值是6
而 2 3 -6 7 的最大值为7
样例输入
6
5 4 3 -15 -12 13
样例输出
13
思路一(前缀和)
因为有负数,所以前缀和的值并非单调递增的
而最大字段和只可能出现在任意两个底谷和顶峰之间
图中红色为最大子段和可能出现的地方
所以正序搜出前缀和最小值,倒序搜出最大值,对每个点获得其左边最小的前缀和,右边最大的前缀和,相减即可得到最大子段和。
代码如下:
#include<queue>
#include<string>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; long long sum[],a[],n,max1[],min1[]; int main()
{
for(int i=;i<=;i++)
{
sum[i]=-;
}
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
sum[i]=sum[i-]+a[i];
}
long long tmpx=-,tmpn=;
for(int i=;i<=n;i++)
{
tmpn=min(tmpn,sum[i]);
min1[i]=tmpn;
}
for(int i=n;i>=;i--)
{
tmpx=max(tmpx,sum[i]);
max1[i]=tmpx;
}
long long ans=-;
for(int i=;i<=n;i++)
{
ans=max(ans,max1[i]-min1[i-]);
}
printf("%lld\n",ans);
}
思路二(DP)
设f[i]为到i为止以i为终点的最大子段和
则只有两种情况,要么承接以上一个数为终点的子段,要么自己新开一段,既作为开始的起点又作为结束的终点
那么怎么选择呢?这转移方程显然非常好得到:
f[i]=max{f[i-1]+a[i],a[i]}
于是代码如下:
#include<queue>
#include<string>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; long long f[],a[],n; int main()
{
f[]=-;
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(int i=;i<=n;i++)
{
f[i]=max(f[i-]+a[i],a[i]);
}
long long ans=-;
for(int i=;i<=n;i++)
{
ans=max(ans,f[i]);
}
printf("%lld\n",ans);
}
二、最大子矩阵
题意:
给出一个n*m的矩阵(n,m<=200),在矩阵中选出一个子矩阵,使子矩阵的和最大。
样例输入:
4 4
-1 -1 -1 -1
-1 1 1 -1
-1 1 1 -1
-1 -1 -1 -1
样例输出:
4
思路一(n^4暴力)
就是最简单的暴力,统计二维前缀和,枚举左上节点和右下节点,用容斥来算出这个矩阵的和,记录取最大值。
代码懒得打了,反正理论会T。
思路二(n^3降维后跑最大子段和)
枚举一维的所有宽度,将i-j的宽度压缩到一行
对该行跑一遍最大子段和,统计答案
代码写了两种,一种比较好理解但是容易MLE
另一种内存复杂度更优秀一点
第一种:
#include<queue>
#include<string>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; long long n,m,map[][],sum[][][],f[][][],ans=-; int main()
{
scanf("%lld%lld",&n,&m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%lld",&map[i][j]);
}
}
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
for(int k=;k<=m;k++)
{
sum[i][j][k]=sum[i][j-][k]+map[j][k];
}
}
}
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
for(int k=;k<=m;k++)
{
f[i][j][k]=max(f[i][j][k-]+sum[i][j][k],sum[i][j][k]);
ans=max(ans,f[i][j][k]);
}
}
}
printf("%lld\n",ans);
}
第二种:
#include<queue>
#include<string>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; long long n,m,ans=-;
long long sum[][],map[][],f[]; int main()
{
scanf("%lld%lld",&n,&m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%lld",&map[i][j]);
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
sum[i][j]=sum[i-][j]+map[i][j];
}
}
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
f[]=0ll;
for(int k=;k<=m;k++)
{
f[k]=max(f[k-]+sum[j][k]-sum[i-][k],sum[j][k]-sum[i-][k]);
ans=max(ans,f[k]);
}
}
}
printf("%lld\n",max(ans,0ll));
}
一类适合初学者的DP:最大子段和与最大子矩阵的更多相关文章
- [C#] Timer + Graphics To Get Simple Animation (简单的源码例子,适合初学者)
>_<" 这是一个非常简单的利用C#的窗口工程创立的程序,用来做一个简单的动画,涉及Timer和Graphics,适合初学者,高手略过~
- 推荐10个适合初学者的 HTML5 入门教程
HTML5 作为下一代网站开发技术,无论你是一个 Web 开发人员或者想探索新的平台的游戏开发者,都值得去研究.借助尖端功能,技术和 API,HTML5 允许你创建响应性.创新性.互动性以及令人惊叹的 ...
- 5、WPF实现简单计算器-非常适合初学者练习
Sample Calculator 这是微软社区WPF的一个示例,在源程序的基础上我进行了一点点修改,非常适合初学者练习,详细代码解释. 源程序的下载地址 http://code.msdn.micro ...
- 强烈推荐visual c++ 2012入门经典适合初学者入门
强烈推荐visual c++ 2012入门经典适合初学者入门 此书循序渐进,用其独特.易于理解的教程风格来介绍各个主题,无论是编程新手,还是经验丰富的编程人员,都很容易理解. 此书的目录基本覆盖了Wi ...
- Linux内核开发进阶书籍推荐(不适合初学者)
Linux内核开发进阶书籍推荐(不适合初学者) 很早之前就想写一篇文章总结一下Linux Kernel开发的相关资料,项目的原因,再加上家里的一些事情,一直没能找到闲暇,今天终于有些时间,希望可以完成 ...
- 适合初学者的python实际例子
最近在github上发现了一个有意思的项目,很适合初学者学习python代码. 学习一门语言刚开始的时候是很枯燥的,各种概念语法以及无聊的打印都会让人失去更进一步学习的动力. 很多同学在学习了一段时间 ...
- 7-OKHttp使用详解,步骤挺详细的,适合初学者使用!
OKHttp使用详解,步骤挺详细的,适合初学者使用! 一,OKHttp介绍 okhttp是一个第三方类库,用于android中请求网络. 这是一个开源项目,是安卓端最火热的轻量级框架,由移动支付Squ ...
- 一些适合初学者的C/C++语言开发环境(IDE)
对于很多初学C语言的人来说,第一个开发环境应该都是VC6.0(没办法的事,很多高校都用VC6),在以前VC6确实是比较适合用来进行C/C++的学习. 但现在VC6已经不适合当前的环境了,更不适合新手. ...
- Vue slot-scope的理解(适合初学者)
百度上已经有很多的关于slot-scope的文章,但我感觉都是那些以前没学好,又回头学的人,他们都使用了.Vue文件,我觉得有点不适合初学者,所以我就写一篇适合初学者的. 先抛例程: <!DOC ...
随机推荐
- linux-强制断开远程tcp连接
最近在做日常维护,搭建了socks代理,但是socks代理服务已经关闭了,由于其他机器还在和我的服务器保持tcp长连接 e.g. tcp ESTAB Google了一下,没找到特别好的办法,例如ipt ...
- Netty面试题
1.BIO.NIO和AIO的区别? BIO:一个连接一个线程,客户端有连接请求时服务器端就需要启动一个线程进行处理.线程开销大. 伪异步IO:将请求连接放入线程池,一对多,但线程还是很宝贵的资源. N ...
- C# 项目开发笔记
这里主要记录一些容易错的内容,在项目开发中总结出来的经验和教训. 1 语法 (1)判断float是否为Nan,不能使用 xxx = flaot.Nan去做,要使用float.IsNan去做. (2)u ...
- POI-Excel表格导入和导出
ExcelWriter /** * @author zuzhilong * @date 2013-10-10 下午08:04:02 * @desc 生成导出Excel文件对象 * @modify * ...
- HTML5服务器推送消息的各种解决办法,html5服务器
HTML5服务器推送消息的各种解决办法,html5服务器 摘要 在各种BS架构的应用程序中,往往都希望服务端能够主动地向客户端推送各种消息,以达到类似于邮件.消息.待办事项等通知. 往BS架构本身存在 ...
- 3DMAX 处理反面
问题起源:从3DMAX导出一个模型为FBX后,在U3D中看到模型很奇怪的透视了,能看到背面看不到正面,这不法线问题,而是面反了. 即然是面反了,为什么在MAX中看起来是正确的呢? 应该是开启了双面模式 ...
- Python基础:Python数据类型及逻辑判断语句
Python代码需要严谨的缩进 # 导包 import random # ********************输入输出***************** # 输出 print("hell ...
- go_切片
go语言中切片相当于array的一个view.其底层实现如下ptr指的是slice中打头的元素.len表示slice的长度.cap表示ptr到整个array的长度 slice可以向后扩展,但不能超过对 ...
- 创建数据库sql语句
create database JXGL; go create table S( sno char(10)primary key not null, sname nvarchar(10) not nu ...
- Hibernate一对多操作
--------------------siwuxie095 Hibernate 一对多操作 以客户和联系人为例,客户是一,联系人是多 即 一个客户里面有多个联系人,一个联系人只能属于一个客户 注意: ...