Deep Learning 阅读笔记:Convolutional Auto-Encoders 卷积神经网络的自编码表达
需要搭建一个比较复杂的CNN网络,希望通过预训练来提高CNN的表现。
上网找了一下,关于CAE(Convolutional Auto-Encoders)的文章还真是少,勉强只能找到一篇瑞士的文章、
Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction
干货少,不过好歹有对模型的描述,拿来看看。
概述:
本文提出了一种卷积神经网络的自编码表达,用于对卷积神经网络进行预训练。
具体内容:
原文废话挺多,我只关心模型——CAE:
卷积层的获得:
再表达:
其中“ * ”表示卷积;再表达的系数矩阵是卷积矩阵
在两个维度上的翻转(rot180)。
关于CAE的具体结构论文讲得不清不楚(果真是水),这里有两个明显的问题:一是两次用同样大小卷积核做的卷积如何恢复原来图像的大小,论文中提到full convolution和valid convolution,大概是指两次卷积的卷积方法不同;另一个就是用卷积核的反转卷积隐藏层的意义和作用何在,这个实在是无端端冒出来的计算方法;
输出的误差使用均方误差MSE:
偏导的求法:
deltaH和deltaY分别是隐藏层和输出层的敏感度。这里又有问题:只有一个隐藏层怎么来敏感度?如果是反向传播怎么传播过去?论文此处的“ * ”还是代表的是卷积吗?如果是的话用的是full还是valid?为什么用隐藏层和敏感度做运算而不是卷积核?这个公式到底怎么来的?(天到底是我太水还是论文太渣)
接着论文提到了在非监督学习下的non-overlapping maxpooling。说这东西真是厉害,maxpooling抹去了区域非最大值,因此引入稀疏性。强大到甚至连稀疏性惩罚项都不用就可以获得好结果。(你给我讲清楚为什么啊喂!)
试验结果:
论文使用MNIST和CIFAR10数据库各做了4组实验,每组训练20个features,结果如下:
MNIST:
CIFAR10:
其中a)是简单的CAE,b)引入了30%噪声,C)引入maxpooling,D)引入maxpooling和30%噪声。
单从这两组结果来看有maxpooling的CAE,通过训练获得较好特征。
与其他方法对比:
文中最后利用CAE做pretraining训练一个6层隐藏层的CNN,与无pretraining的CNN相比,其实提高不明显。
感想:看完这篇文章对我想构建的CAE貌似没有太大的帮助,因为此文章在实践方面的细节和数学过程的推导都是一笔带过,没有详尽描述。(到底是我水还是文章水)
Deep Learning 阅读笔记:Convolutional Auto-Encoders 卷积神经网络的自编码表达的更多相关文章
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...
- “Deep models under the GAN: information leakage from collaborative deep learning”阅读笔记
一.摘要 指出深度学习在机器学习场景下的优势,以及深度学习快速崛起的原因.随后点出研究者对于深度学习隐私问题的考虑.作者提出了一种强力的攻击方法,在其攻击下任何分布式.联邦式.或者中心化的深度学习方法 ...
- Neural Networks and Deep Learning 课程笔记(第二周)神经网络的编程基础 (Basics of Neural Network programming)
总结 一.处理数据 1.1 向量化(vectorization) (height, width, 3) ===> 展开shape为(heigh*width*3, m)的向量 1.2 特征归一化( ...
- Deep Learning系统实训之三:卷积神经网络
边界填充(padding):卷积过程中,越靠近图片中间位置的像素点越容易被卷积计算多次,越靠近边缘的像素点被卷积计算的次数越少,填充就是为了使原来边缘像素点的位置变得相对靠近中部,而我们又不想让填充的 ...
- Deep Learning 学习笔记(7):神经网络的求解 与 反向传播算法(Back Propagation)
反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能 ...
- Deep Learning 学习笔记(6):神经网络( Neural Network )
神经元: 在神经网络的模型中,神经元可以表示如下 神经元的左边是其输入,包括变量x1.x2.x3与常数项1, 右边是神经元的输出 神经元的输出函数被称为激活函数(activation function ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
随机推荐
- Leetcode 894. All Possible Full Binary Trees
递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # ...
- 解决在django中应用keras模型时出现的ValueError("Tensor %s is not an element of this graph." % obj)问题
用keras训练好模型,再在django初始化加载模型,这个过程没有问题,但是在调用到模型执行model.predict()的时候就报错: raise ValueError("Tensor ...
- 人生苦短之我用Python篇(XML模块)
XML模块 http://baike.baidu.com/link?url=-mBgvMdEDU7F05Pw7h_hBt7A0ctYiPm5a_WvKVLknydnRXKRIyydcVZWRjd_5H ...
- wireshark的提示
内容:12个wrieshark的提示 1.[Packet size limited during capture] 在捕获数据包大小有限,即包没有抓全 2.[TCP previous segment ...
- 2D game engine essentials [to be continued...]
All 2D Game Engines/Frameworks are trying to solve the same problem(s). Languages don't matter- they ...
- 如何删除 Windows 10 系统生成的 WindowsApps 文件夹
如果曾经修改过 Windows 10 应用安装路径到非系统盘,那么那个盘下就会生成一些文件夹.如果以后重装了系统或者应用删除了,挪位置了,那些文件夹依然在那里——删不掉! 大家都知道这是权限问题,然而 ...
- java集成WebSocket向所有用户发送消息
package com.reading.controller.library; import org.springframework.stereotype.Controller; import org ...
- 《DSP using MATLAB》示例Example8.2
代码: N = 3; OmegaC = 0.5; % Direct form [b, a] = u_buttap(N, OmegaC); [C, B, A] = sdir2cas(b, a) 运行结果 ...
- Appium 定位方法例子(4)
有朋友留言反应定位不到元素,没错,船长也为这个一直在头疼,我用的App是原生安卓+webService+h5类型的,定位虽然没问题,但是在进行操作的时候各种不通过……真的很头疼啊……我这里说的“操作” ...
- PAT 1006 换个格式输出 C语言
让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换个格式来输出任一个不超过3位的正整数.例如234应该被输出为BBSSS1234,因为它有2个“百”. ...