需要搭建一个比较复杂的CNN网络,希望通过预训练来提高CNN的表现。

上网找了一下,关于CAE(Convolutional Auto-Encoders)的文章还真是少,勉强只能找到一篇瑞士的文章、

Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction

干货少,不过好歹有对模型的描述,拿来看看。



概述:

  本文提出了一种卷积神经网络的自编码表达,用于对卷积神经网络进行预训练。

具体内容:

  原文废话挺多,我只关心模型——CAE:

    

    卷积层的获得:

    

    再表达:

    其中“ * ”表示卷积;再表达的系数矩阵是卷积矩阵在两个维度上的翻转(rot180)。

  关于CAE的具体结构论文讲得不清不楚(果真是水),这里有两个明显的问题:一是两次用同样大小卷积核做的卷积如何恢复原来图像的大小,论文中提到full convolution和valid convolution,大概是指两次卷积的卷积方法不同;另一个就是用卷积核的反转卷积隐藏层的意义和作用何在,这个实在是无端端冒出来的计算方法;


    输出的误差使用均方误差MSE:

    偏导的求法:

  deltaH和deltaY分别是隐藏层和输出层的敏感度。这里又有问题:只有一个隐藏层怎么来敏感度?如果是反向传播怎么传播过去?论文此处的“ * ”还是代表的是卷积吗?如果是的话用的是full还是valid?为什么用隐藏层和敏感度做运算而不是卷积核?这个公式到底怎么来的?(天到底是我太水还是论文太渣)

  接着论文提到了在非监督学习下的non-overlapping maxpooling。说这东西真是厉害,maxpooling抹去了区域非最大值,因此引入稀疏性。强大到甚至连稀疏性惩罚项都不用就可以获得好结果。(你给我讲清楚为什么啊喂!)


试验结果:   

      论文使用MNISTCIFAR10数据库各做了4组实验,每组训练20个features,结果如下:

MNIST:

CIFAR10:

其中a)是简单的CAE,b)引入了30%噪声,C)引入maxpooling,D)引入maxpooling和30%噪声。

单从这两组结果来看有maxpooling的CAE,通过训练获得较好特征。


与其他方法对比:

   文中最后利用CAE做pretraining训练一个6层隐藏层的CNN,与无pretraining的CNN相比,其实提高不明显。


感想:看完这篇文章对我想构建的CAE貌似没有太大的帮助,因为此文章在实践方面的细节和数学过程的推导都是一笔带过,没有详尽描述。(到底是我水还是文章水)

Deep Learning 阅读笔记:Convolutional Auto-Encoders 卷积神经网络的自编码表达的更多相关文章

  1. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  2. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  3. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  4. “Deep models under the GAN: information leakage from collaborative deep learning”阅读笔记

    一.摘要 指出深度学习在机器学习场景下的优势,以及深度学习快速崛起的原因.随后点出研究者对于深度学习隐私问题的考虑.作者提出了一种强力的攻击方法,在其攻击下任何分布式.联邦式.或者中心化的深度学习方法 ...

  5. Neural Networks and Deep Learning 课程笔记(第二周)神经网络的编程基础 (Basics of Neural Network programming)

    总结 一.处理数据 1.1 向量化(vectorization) (height, width, 3) ===> 展开shape为(heigh*width*3, m)的向量 1.2 特征归一化( ...

  6. Deep Learning系统实训之三:卷积神经网络

    边界填充(padding):卷积过程中,越靠近图片中间位置的像素点越容易被卷积计算多次,越靠近边缘的像素点被卷积计算的次数越少,填充就是为了使原来边缘像素点的位置变得相对靠近中部,而我们又不想让填充的 ...

  7. Deep Learning 学习笔记(7):神经网络的求解 与 反向传播算法(Back Propagation)

    反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能 ...

  8. Deep Learning 学习笔记(6):神经网络( Neural Network )

    神经元: 在神经网络的模型中,神经元可以表示如下 神经元的左边是其输入,包括变量x1.x2.x3与常数项1, 右边是神经元的输出 神经元的输出函数被称为激活函数(activation function ...

  9. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

随机推荐

  1. Leetcode 894. All Possible Full Binary Trees

    递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # ...

  2. 解决在django中应用keras模型时出现的ValueError("Tensor %s is not an element of this graph." % obj)问题

    用keras训练好模型,再在django初始化加载模型,这个过程没有问题,但是在调用到模型执行model.predict()的时候就报错: raise ValueError("Tensor ...

  3. 人生苦短之我用Python篇(XML模块)

    XML模块 http://baike.baidu.com/link?url=-mBgvMdEDU7F05Pw7h_hBt7A0ctYiPm5a_WvKVLknydnRXKRIyydcVZWRjd_5H ...

  4. wireshark的提示

    内容:12个wrieshark的提示 1.[Packet size limited during capture] 在捕获数据包大小有限,即包没有抓全 2.[TCP previous segment ...

  5. 2D game engine essentials [to be continued...]

    All 2D Game Engines/Frameworks are trying to solve the same problem(s). Languages don't matter- they ...

  6. 如何删除 Windows 10 系统生成的 WindowsApps 文件夹

    如果曾经修改过 Windows 10 应用安装路径到非系统盘,那么那个盘下就会生成一些文件夹.如果以后重装了系统或者应用删除了,挪位置了,那些文件夹依然在那里——删不掉! 大家都知道这是权限问题,然而 ...

  7. java集成WebSocket向所有用户发送消息

    package com.reading.controller.library; import org.springframework.stereotype.Controller; import org ...

  8. 《DSP using MATLAB》示例Example8.2

    代码: N = 3; OmegaC = 0.5; % Direct form [b, a] = u_buttap(N, OmegaC); [C, B, A] = sdir2cas(b, a) 运行结果 ...

  9. Appium 定位方法例子(4)

    有朋友留言反应定位不到元素,没错,船长也为这个一直在头疼,我用的App是原生安卓+webService+h5类型的,定位虽然没问题,但是在进行操作的时候各种不通过……真的很头疼啊……我这里说的“操作” ...

  10. PAT 1006 换个格式输出 C语言

    让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换个格式来输出任一个不超过3位的正整数.例如234应该被输出为BBSSS1234,因为它有2个“百”. ...