Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2513    Accepted Submission(s): 904

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input

4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
 
Sample Output

20 no 13 no 20 yes 4 yes
 
求子矩阵内最大的值是多少。
思路:
二维RMQ处理。
dp[row][col][i][j] 表示[row,row+2^i-1]x[col,col+2^j-1] 二维区间内的最小值
=  max{dp[row][col][i][j-1],dp[row][col][i-1][j],dp[row][col+2^(j-1)][i][j-1],dp[row+2^(i-1)][col][i-1][j]}
 
查询结果为
      max{dp[sx][sy][kx][ky],dp[sx][ey-2^ky+1][kx][ky],dp[ex-2^kx+1][sy][kx][ky],dp[ex-2^kx+1][ey-2^ky+1][kx][ky]}
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
int a[MAXN][MAXN],n,m,dp[MAXN][MAXN][][];
void Init()
{
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
dp[i][j][][] = a[i][j];
}
}
for(int pi = ; pi < ; pi++){
for(int pj = ; pj < ; pj++){
if(pi == && pj == )continue;
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(i + ( << pi) - > n || j + ( << pj) - > m)continue;
if(pi == ){
dp[i][j][pi][pj] = max(dp[i][j][pi][pj-],dp[i][j+(<<(pj-))][pi][pj-]);
}
else {
dp[i][j][pi][pj] = max(dp[i][j][pi-][pj],dp[i+(<<(pi-))][j][pi-][pj]);
}
}
}
}
}
}
void getans(int x1,int y1,int x2,int y2)
{
int kx,ky;
kx = (int)(log((double)(x2 - x1)) / log(2.0));
ky = (int)(log((double)(y2 - y1)) / log(2.0));
int ans = -INF;
ans = max(ans,dp[x1][y1][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y1][kx][ky]);
ans = max(ans,dp[x1][y2 - ( << ky) + ][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y2 - ( << ky) + ][kx][ky]);
printf("%d ",ans);
if(a[x1][y1] == ans || a[x1][y2] == ans || a[x2][y1] == ans || a[x2][y2] == ans)printf("yes\n");
else printf("no\n");
}
void solve()
{
int q;
scanf("%d",&q);
int x1,y1,x2,y2;
while(q--){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
getans(x1,y1,x2,y2);
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d",&a[i][j]);
}
}
Init();
solve();
}
return ;
}

hdu2888 二维RMQ的更多相关文章

  1. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  2. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  3. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  4. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  6. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  7. 【LightOJ 1081】Square Queries(二维RMQ降维)

    Little Tommy is playing a game. The game is played on a 2D N x N grid. There is an integer in each c ...

  8. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  9. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

随机推荐

  1. AC日记——单词替换 1.7 21

    21:单词替换 总时间限制:  1000ms 内存限制:  65536kB 描述 输入一个字符串,以回车结束(字符串长度<=100).该字符串由若干个单词组成,单词之间用一个空格隔开,所有单词区 ...

  2. 紫书例题-Ancient Cipher

    Ancient Roman empire had a strong government system with various departments, including a secret ser ...

  3. [No000033]码农网-如何锻炼出最牛程序员的编码套路

    最近,我大量阅读了Steve Yegge的文章.其中有一篇叫"Practicing Programming"(练习编程),写成于2005年,读后令我惊讶不已: 与你所相信的恰恰相反 ...

  4. 12个JQuery小贴士

    返回顶部 使用JQuery的 animate 和 scrollTop 方法可以创建简单地返回顶部的动画: // Back to top $('a.top').click(function (e) { ...

  5. Basic: Fisher's transform

    来源:http://bbs.chinahrd.net/thread-709742-1-1.html,Kenneth的回答. z = 0.5 * ln [ (1+r)/(1-r) ]" C0 ...

  6. 044医疗项目-模块四:采购单模块—采购单保存(Dao,Service,Action三层)

    我们上上一篇文章(042医疗项目-模块四:采购单模块-采购单明细添加查询,并且把数据添加到数据库中)做的工作是把数据插入到了数据库,我们这篇文章做的是042医疗项目-模块四:采购单模块-采购单明细添加 ...

  7. 02传智_jbpm与OA项目_部门模块

    部门模块:具有增删改查(部门)的功能. Dao层的实现: 1,定义一个DepartmentDao.java. 定义基本的数据库操作.

  8. CastleActiveRecord在多线程 事务提交时数据库资源竞争导致更新失败的测试结果记录

    CastleActiveRecord 经过测试,隔离级别: // 摘要: ,         ,         ,         ,         ,         ,         ,   ...

  9. 安装Docker Toolbox后出现的问题

    Installing Docker Toolbox on Windows with Hyper-V Installed Installing Docker on Windows is a fairly ...

  10. 后台运行程序screen or nohup

    后台运行 方法1 &   方法2:screen screen –S lnmp à起个名字 进去后运行程序 Ctrl+ad à退出lnmp屏幕 Scree –ls à查看 Screen –r x ...