Check Corners

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2513    Accepted Submission(s): 904

Problem Description
Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
 
Input
There are multiple test cases.

For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer.

The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.

 
Output
For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
 
Sample Input

4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
 
Sample Output

20 no 13 no 20 yes 4 yes
 
求子矩阵内最大的值是多少。
思路:
二维RMQ处理。
dp[row][col][i][j] 表示[row,row+2^i-1]x[col,col+2^j-1] 二维区间内的最小值
=  max{dp[row][col][i][j-1],dp[row][col][i-1][j],dp[row][col+2^(j-1)][i][j-1],dp[row+2^(i-1)][col][i-1][j]}
 
查询结果为
      max{dp[sx][sy][kx][ky],dp[sx][ey-2^ky+1][kx][ky],dp[ex-2^kx+1][sy][kx][ky],dp[ex-2^kx+1][ey-2^ky+1][kx][ky]}
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
int a[MAXN][MAXN],n,m,dp[MAXN][MAXN][][];
void Init()
{
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
dp[i][j][][] = a[i][j];
}
}
for(int pi = ; pi < ; pi++){
for(int pj = ; pj < ; pj++){
if(pi == && pj == )continue;
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(i + ( << pi) - > n || j + ( << pj) - > m)continue;
if(pi == ){
dp[i][j][pi][pj] = max(dp[i][j][pi][pj-],dp[i][j+(<<(pj-))][pi][pj-]);
}
else {
dp[i][j][pi][pj] = max(dp[i][j][pi-][pj],dp[i+(<<(pi-))][j][pi-][pj]);
}
}
}
}
}
}
void getans(int x1,int y1,int x2,int y2)
{
int kx,ky;
kx = (int)(log((double)(x2 - x1)) / log(2.0));
ky = (int)(log((double)(y2 - y1)) / log(2.0));
int ans = -INF;
ans = max(ans,dp[x1][y1][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y1][kx][ky]);
ans = max(ans,dp[x1][y2 - ( << ky) + ][kx][ky]);
ans = max(ans,dp[x2 - ( << kx) + ][y2 - ( << ky) + ][kx][ky]);
printf("%d ",ans);
if(a[x1][y1] == ans || a[x1][y2] == ans || a[x2][y1] == ans || a[x2][y2] == ans)printf("yes\n");
else printf("no\n");
}
void solve()
{
int q;
scanf("%d",&q);
int x1,y1,x2,y2;
while(q--){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
getans(x1,y1,x2,y2);
}
}
int main()
{
while(~scanf("%d%d",&n,&m)){
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d",&a[i][j]);
}
}
Init();
solve();
}
return ;
}

hdu2888 二维RMQ的更多相关文章

  1. hdu2888 二维ST表(RMQ)

    二维RMQ其实和一维差不太多,但是dp时要用四维 /* 二维rmq */ #include<iostream> #include<cstring> #include<cs ...

  2. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  3. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  4. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  6. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  7. 【LightOJ 1081】Square Queries(二维RMQ降维)

    Little Tommy is playing a game. The game is played on a 2D N x N grid. There is an integer in each c ...

  8. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  9. POJ 2019 Cornfields (二维RMQ)

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4911   Accepted: 2392 Descri ...

随机推荐

  1. log4j日志文件配置说明及使用

    一.log4j.properties文件格式说明:    log4j.rootLogger=info, stdout log4j.appender.stdout=org.apache.log4j.Co ...

  2. uva216 Getting in Line

    Computer networking requires that the computers in the network be linked. This problem considers a \ ...

  3. linux下DHCP服务原理总结

    DHCP(全称Dynamic host configuration protocol):动态主机配置协议DHCP工作在OSI的应用层,可以帮助计算机从指定的DHCP服务器获取配置信息的协议.(主要包括 ...

  4. swift中第三方网络请求库Alamofire的安装与使用

    swift中第三方网络请求库Alamofire的安装与使用 Alamofire是swift中一个比较流行的网络请求库:https://github.com/Alamofire/Alamofire.下面 ...

  5. MYSQL临时表创建索引

    DROP TEMPORARY TABLE IF EXISTS tmp_record_t2;CREATE TEMPORARY TABLE tmp_record_t2(consumption_id INT ...

  6. 初中级Web开发人员的福音:《JavaScript启示录》上市了

    经历过14个月的等待,本书终于上市了,完全口语化叙述,请参考右边的链接. 本书介绍 本书无关于JavaScript设计模式,也无关于JavaScript面向对象代码实现.本书的写作目的也不是鉴别Jav ...

  7. Java 基础【09】 日期类型

    java api中日期类型的继承关系 java.lang.Object --java.util.Date --java.sql.Date --java.sql.Time --java.sql.Time ...

  8. Toxy新手指南

    Neuzilla出品 官方网站:http://toxy.codeplex.com QQ群:297128022 官方微信公众号: Toxy 是干嘛用的?它是.NET平台上的文件抽取框架,主要解决各种格式 ...

  9. .NET MVC AjaxHelper

    我们首先必须开启 非入侵式 Ajax:导入Jquery和unobtrusiveAjax文件 已经默认开启客户端验证 和 非侵入式js <add key="ClientValidatio ...

  10. <实训|第六天>偷偷让新手的Linux无限重启附linux主机名称不是随便乱改的!

    先说个事情:这几天我正在忙一个项目的设计,8月1号之前要弄出来,所以每天都要弄到很晚,可能更新就有点跟不上了,不过我如果有时间的话,我就更新,没时间的话,我会在8月1号之后统一更新出来,希望大家谅解! ...