Long-Short Memory Network(LSTM长短期记忆网络)
自剪枝神经网络
Simple RNN从理论上来看,具有全局记忆能力,因为T时刻,递归隐层一定记录着时序为1的状态
但由于Gradient Vanish问题,T时刻向前反向传播的Gradient在T-10时刻可能就衰减为0。
从Long-Term退化至Short-Term。
尽管ReLU能够在前馈网络中有效缓解Gradient Vanish,但RNN的深度过深,替换激活函数治标不治本。
$\left | \prod_{j=p+1}^{t}\frac{\partial b_{h}^{j}}{\partial b_{h}^{j-1}}\right |\leqslant (\beta_{W}\cdot\beta_{h})^{t-p} \quad where \quad \beta =UpperBound$
上式中指明的根源所在,由于W和h两个矩阵多次幂导致受数值影响敏感,简而言之就是深度过大。
大部分Long-Term情况下,不需要提供路径上完整的信息,但反向传播还是循规蹈矩地穿过这些冗深度。

解决方案之一是,设置可自主学习的参数来屏蔽掉这些无用的信息,与"降维"相似,这种方法叫"降层"

神经网络的剪枝策略很简单,就是添加参数矩阵,经过一定周期的学习,选择性屏蔽掉输入,精简网络。
从结构上来看,类似“树套树”,就是”神经网络套神经网络“。
动态门结构

简单概括:
★LSTM将RNN的输入层、隐层移入Memory Cell加以保护
★Input Gate、Forget Gate、Output Gate,通过训练参数,将Gate或开(置1)或闭(置0),保护Cell。
在时序展开图上则更加清晰:

公式定义
原版LSTM最早在[Hochreiter&Schmidhuber 97]提出。
今天看到的LSTM是[Gers 2002]改良过的 extended LSTM。
extended LSTM扩展内容:
★Forget Gate,用于屏蔽t-1以及之前时序信息。
在时序展开图上,由左侧锁住以保护Cell。
★三态门控:
97年提出的Gate输入类似RNN,分为两态Weight矩阵:
☻Wx——序列输入信息
☻Wh——递归隐态输入信息
2002年补充了第三态:
☻Wc——递归Cell态输入信息
将Cell的时序状态引入Gate,称为Peephole Weights。
唯一作用似乎是提升LSTM精度,Alex Graves的博士论文中这么说:
The peephole connections,meanwhile, improved the LSTM’s ability to learn tasks that require precise
timing and counting of the internal states.
具体实现的时候,为了增加计算效率,可以忽视:
Theano的Tutorial中这么说道:
The model we used in this tutorial is a variation of the standard LSTM model.
In this variant, the activation of a cell’s output gate does not depend on the memory cell’s state
.
This allows us to perform part of the computation more efficiently (see the implementation note, below, for details).
而CS224D Lecture8中压根就没提。
所以双态Gate可能是更为主流的LSTM变种。
2.1 前向传播
输入门:
$i_{t}=Sigmoid(W_{i}x_{t}+U_{i}h_{t-1}+V_{i}C_{t-1})$ ①
遗忘门:
$f_{t}=Sigmoid(W_{f}x_{t}+U_{f}h_{t-1}+V_{f}C_{t-1})$ ②
输出门:
$O_{t}=Sigmoid(W_{o}x_{t}+U_{o}h_{t-1}+V_{o}C_{t})$ ③
原始Cell(RNN部分):
$\tilde{C_{t}}=Tanh(W_{c}x_{t}+U_{c}h_{t-1})$ ④
门套Cell:
$C_{t}=i_{t}\cdot\tilde{C_{t}}+f_{t}\cdot C_{t-1}$ (输入门+遗忘门) ⑤
$h_{t}=O_{t}\cdot Tanh(C_{t}) \quad where \quad h_{t}=FinalOutput$ (输出门) ⑥
————————————————————————————————————————————————————
仔细观察①②③④,发现除了Peephole Weights引入的$V$阵,这四个式子是一样的。
Theano中为了GPU能够一步并行计算,没有使用Peephole Weights,这样①②③④就是一个基本并行模型:
以相同的代码,运算数据集在空间中的不同部分。
Long-Short Memory Network(LSTM长短期记忆网络)的更多相关文章
- LSTM - 长短期记忆网络
循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...
- LSTM长短期记忆网络
Long Short Term Memory networks : http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- 如何预测股票分析--长短期记忆网络(LSTM)
在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...
- 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)
递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...
- 理解长短期记忆网络(LSTM NetWorks)
转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...
- TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集
1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...
- LSTMs 长短期记忆网络系列
RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...
- Keras(五)LSTM 长短期记忆模型 原理及实例
LSTM 是 long-short term memory 的简称, 中文叫做 长短期记忆. 是当下最流行的 RNN 形式之一 RNN 的弊端 RNN没有长久的记忆,比如一个句子太长时开头部分可能会忘 ...
- LSTM(Long Short-Term Memory)长短期记忆网络
1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的.但是,对于RNN网络存在长期依赖问题,比如 ...
随机推荐
- ASP.NET MVC 伪静态的实现
public class RouteConfig { public static void RegisterRoutes(RouteCollection routes) { routes.Ignore ...
- Arch Linux Installation Guide
Arch Linux Installation Guide timedatectl set-ntp true sed -i '/Score/{/China/!{n;s/^/#/}}' /etc ...
- poj 3984:迷宫问题(广搜,入门题)
迷宫问题 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7635 Accepted: 4474 Description ...
- h5 range应用 透明度+RGB
透明度 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- bootstrap表单带验证
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...
- memcache(使用php操作memcache)
.概念 memcache 是一个高效的分布式的内存对象缓存系统,他可以支持把php的各种数据(数组,对象,基本数据类型)放在它管理的内存中 . 安装步骤 1.下载php_memcache.dll文件并 ...
- 使用ASP.NET MVC、Rabbit WeixinSDK和Azure快速开发部署微信后台
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:公众号后台系统和数据都基本准备妥当了,可以来分享下我是如何开发本微信公众号的后台系统了 ...
- error MSB6006: “cmd.exe”已退出,代码为 3。
VS2012 Qt项目生成提示以下错误: 原因是 generated files 的 debug或release文件夹下的文件不存在. 解决方法:QT5 –>convert project ...
- 【Tomcat】直接启动tomcat时为tomcat指定JDK 而不是读取环境变量中的配置
在windows环境下以批处理文件方式启动tomcat,只要运行<CATALINA_HOME>/bin/startup.bat这个文件,就可以启动Tomcat.在启动时,startup.b ...
- mysql注入小测试
转自:http://www.jb51.net/article/46163.htm 在开发网站的时候,出于安全考虑,需要过滤从页面传递过来的字符.通常,用户可以通过以下接口调用数据库的内容:URL地址栏 ...