p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px Courier; color: #323333; background-color: #f5f5f5 }
p.p5 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px Courier; color: #323333; background-color: #f5f5f5 }
p.p6 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px Courier; color: #323333 }
p.p7 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px Courier; color: #999988; background-color: #f5f5f5 }
p.p8 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px Courier; color: #dd2244; background-color: #f5f5f5 }
span.s1 { }
span.s2 { color: #991200 }
span.s3 { color: #687687 }
span.s4 { }
span.s5 { color: #991c73 }
span.s6 { color: #009999 }
span.s7 { }
span.s8 { color: #323333 }
span.s9 { color: #323333 }
span.s10 { color: #dd2244 }
span.s11 { color: #999988 }

R之data.table -melt/dcast(数据拆分和合并)

写在前面:数据整形的过程确实和揉面团有些类似,先将数据通过melt()函数将数据揉开,然后再通过dcast()函数将数据重塑成想要的形状

reshape2包:

melt-把宽格式数据转化成长格式。

cast-把长格式数据转化成宽格式。(dcast-输出时返回一个数据框。acast-输出时返回一个向量/矩阵/数组。)

注:melt是数据融合的意思,它做的工作其实就是把数据由“宽”转“长”。

cast 函数的作用除了还原数据外,还可以对数据进行整合。

dcast 输出数据框。公式的左边每个变量都会作为结果中的一列,而右边的变量被当成因子类型,每个水平都会在结果中产生一列。

tidyr包:

gather-把宽度较大的数据转换成一个更长的形式,它类比于从reshape2包中融合函数的功能

spread-把长的数据转换成一个更宽的形式,它类比于从reshape2包中铸造函数的功能。

data.table包:

data.table的函数melt 和dcast 是增强包reshape2里同名函数的扩展

library(data.table)

ID <- c(NA,1,2,2)

Time <- c(1,2,NA,1)

X1 <- c(5,3,NA,2)

X2 <- c(NA,5,1,4)

mydata <- data.table(ID,Time,X1,X2)

mydata

##    ID Time X1 X2

## 1: NA    1  5 NA

## 2:  1    2  3  5

## 3:  2   NA NA  1

## 4:  2    1  2  4

md <- melt(mydata, id=c("ID","Time")) #or md <- melt(mydata, id=1:2)

#melt以使每一行都是一个唯一的标识符-变量组合

md     #将第一列作为id列,其他列全部融合就可以了

##    ID Time variable value

## 1: NA    1       X1     5

## 2:  1    2       X1     3

## 3:  2   NA       X1    NA

## 4:  2    1       X1     2

## 5: NA    1       X2    NA

## 6:  1    2       X2     5

## 7:  2   NA       X2     1

## 8:  2    1       X2     4

将变量"variable",和"value"揉合在一起,结果产生了新的两列,一列是变量variable,指代是哪个揉合变量,另外一列是取值value,即变量对应的值。我们也称这样逐行排列的方式称为长数据格式

melt:数据集的融合是将它重构为这样一种格式:每个测量变量独占一行,行中带有要唯一确定这个测量所需的标识符变量。

str(mydata)

## Classes 'data.table' and 'data.frame':   4 obs. of  4 variables:

##  $ ID  : num  NA 1 2 2

##  $ Time: num  1 2 NA 1

##  $ X1  : num  5 3 NA 2

##  $ X2  : num  NA 5 1 4

##  - attr(*, ".internal.selfref")=<externalptr>

str(md)

## Classes 'data.table' and 'data.frame':   8 obs. of  4 variables:

##  $ ID      : num  NA 1 2 2 NA 1 2 2

##  $ Time    : num  1 2 NA 1 1 2 NA 1

##  $ variable: Factor w/ 2 levels "X1","X2": 1 1 1 1 2 2 2 2

##  $ value   : num  5 3 NA 2 NA 5 1 4

##  - attr(*, ".internal.selfref")=<externalptr>

setcolorder(md,c("ID","variable","Time","value")) ##setcolorder()可以用来修改列的顺序。

md

##    ID variable Time value

## 1: NA       X1    1     5

## 2:  1       X1    2     3

## 3:  2       X1   NA    NA

## 4:  2       X1    1     2

## 5: NA       X2    1    NA

## 6:  1       X2    2     5

## 7:  2       X2   NA     1

## 8:  2       X2    1     4

mdr <- melt(mydata, id=c("ID","Time"),variable.name="Xzl",value.name="Vzl",na.rm = TRUE) #variable.name定义变量名

mdr

##    ID Time Xzl Vzl

## 1: NA    1  X1   5

## 2:  1    2  X1   3

## 3:  2    1  X1   2

## 4:  1    2  X2   5

## 5:  2   NA  X2   1

## 6:  2    1  X2   4

mdr1 <- melt(mydata, id=c("ID","Time"),variable.name="Xzl",value.name="Vzl",measure.vars=c("X1"),na.rm = TRUE) #measure.vars筛选

mdr1

##    ID Time Xzl Vzl

## 1: NA    1  X1   5

## 2:  1    2  X1   3

## 3:  2    1  X1   2

md[Time==1]

##    ID variable Time value

## 1: NA       X1    1     5

## 2:  2       X1    1     2

## 3: NA       X2    1    NA

## 4:  2       X2    1     4

md[Time==2]

##    ID variable Time value

## 1:  1       X1    2     3

## 2:  1       X2    2     5

#执行整合

# rowvar1 + rowvar2 + ... ~ colvar1 + colvar2 + ...

# 在这个公式中,rowvar1 + rowvar2 + ... 定义了要划掉的变量集合,以确定各行的内容,而colvar1 + colvar2 + ... 则定义了要划掉的、确定各列内容的变量集合。

newmd<- dcast(md, ID~variable, mean)

newmd

##    ID X1  X2

## 1:  1  3 5.0

## 2:  2 NA 2.5

## 3: NA  5  NA

newmd2<- dcast(md, ID+variable~Time)

newmd2

##    ID variable  1  2 NA

## 1:  1       X1 NA  3 NA

## 2:  1       X2 NA  5 NA

## 3:  2       X1  2 NA NA

## 4:  2       X2  4 NA  1

## 5: NA       X1  5 NA NA

## 6: NA       X2 NA NA NA

#ID+variable~Time  使用Time对(ID,variable)分组 Time:1,2,NA   类似excel的数据透析

newmd3<- dcast(md, ID~variable+Time)

newmd3         #variable:X1,X2     Time:1,2,NA   类似excel的数据透析

##    ID X1_1 X1_2 X1_NA X2_1 X2_2 X2_NA

## 1:  1   NA    3    NA   NA    5    NA

## 2:  2    2   NA    NA    4   NA     1

## 3: NA    5   NA    NA   NA   NA    NA

R之data.table -melt/dcast(数据合并和拆分)的更多相关文章

  1. R语言data.table包fread读取数据

    R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数 ...

  2. R之data.table速查手册

    R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领 ...

  3. R(7): data.table

    这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时 ...

  4. r里面如何实现两列数据合并为一列

    library(dplyr) unite(mtcars, "vs_am", vs, am) Merging Data Adding Columns To merge two dat ...

  5. R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始 ...

  6. R语言数据分析利器data.table包 —— 数据框结构处理精讲

        R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理 ...

  7. R读取大数据data.table包之fread

    >library(data.table)>data=fread("10000000.txt")>Read 9999999 rows and 71 (of 71) ...

  8. R语言数据分析利器data.table包—数据框结构处理精讲

    R语言数据分析利器data.table包-数据框结构处理精讲 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代 ...

  9. 基于R数据分析之常用Package讲解系列--1. data.table

    利用data.table包变形数据 一. 基础概念 data.table 这种数据结构相较于R中本源的data.frame 在数据处理上有运算速度更快,内存运用更高效,可认为它是data.frame ...

随机推荐

  1. 在VS2012/2013上编辑和调试Quick-cocos2d-x的Lua代码

    类似教程链接:http://www.cocoachina.com/bbs/read.php?tid=205043 步骤: 一.Quick-cocos2d-x 最新版本或要打算使用的版本 (http:/ ...

  2. HDU1004之总是wa的细节问题

    #include <stdio.h> #include <string.h> int main() { ][]; int n, i, k, j, max, max_i; ){ ...

  3. 使用SharpSSH连接服务器报Algorithm negotiation fail解决办法

    SharpSSH或JSCH使用diffie-hellman-group1-sha1和diffie-hellman-group-exchange-sha1密钥交换算法,而OpenSSH在6.7p1版本之 ...

  4. linux命令学习(1):grep 命令

    Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来.grep全称是Global Regular Expression Print,表示全局正则表达 ...

  5. Eclipse Android开发环境搭建

    要点: 1)已经安装配置好eclipse和jdk环境 2)给eclipse安装ADT插件(支持android开发) 3)安装配置android sdk环境(类似jdk) 4)eclipse中配置and ...

  6. 如何使用 vimdiff 来 git diff /svn diff

    #git 如何实现vimdiffgit config --global diff.tool vimdiff git config --global difftool.prompt false git ...

  7. Wb应用程序开放原理

    简介:基于wb的浏览器/服务器(简称B/S),架构编程,已经成为目前企业级应用程序开发的主流.                                1.企业应用计算的演变:主机/呀终端的集中 ...

  8. zepto源码--核心方法(类数组相关)--学习笔记

    从这篇起,在没有介绍到各类插件之前,后面将陆续介绍zepto对外暴露的核心方法.即$.fn={}里面的所有方法的介绍.会配合zepto的API进行介绍. 其实前面已经介绍了几个,如width,heig ...

  9. js的实参是按值传递还是按引用传递

    1.如果是基本类型,则是按值传递 var str = 'one';function f(string) {    string = 'two';}f(str);console.log(str); // ...

  10. RML Utilities for SQL Server

    很早以前有看到过关于使用RML Utilities工具分析SQL Trace(.trc)的文章,但一直没有具体实践.最近接管一台数据库服务器,跟踪出一批高消耗的语句,老大需要跟踪分析报表,罗列出过程( ...