【HDU 5698】瞬间移动(组合数,逆元)
x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步。就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i)。相乘起来。 假设$m\leq n$
$$\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^i=\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^{m-2-i}=C_{n+m-4}^{m-2}$$
然后标程里求i的阶乘的逆是预处理的,主要这句:
$$f[i]=(M-M/i)\cdot f[M\%i]\%M$$
这里f即i的逆元,为什么可以这么求呢?
首先这里的M必须是质数。
$$M=k\cdot i+r \equiv 0 \pmod M$$
两边乘上$i^{-1}\cdot r^{-1}$(如果M不是质数,r就可能为0)
$$\begin{eqnarray} k\cdot r^{-1}+i^{-1} &\equiv& 0 &\pmod M\\
i^{-1} &\equiv& -k\cdot r^{-1} &\pmod M\\
i^{-1} &\equiv& M-\left\lfloor\frac{M}{i}\right\rfloor\cdot \left(M\bmod i\right)^{-1} &\pmod M \end{eqnarray}$$
代码
#include<cstdio>
#define M 1000000007
#define N 200001
#define ll long long
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
int n,m;
ll C(ll a,ll b){
return fac[a]*inv[b]%M*inv[a-b]%M;
}
int main(){
for(int i=2;i<N;i++){
fac[i]=fac[i-1]*i%M;
f[i]=(M-M/i)*f[M%i]%M;
inv[i]=inv[i-1]*f[i]%M;
}
while(~scanf("%d%d",&n,&m))
printf("%lld\n",C(m+n-4,m-2));
}
【HDU 5698】瞬间移动(组合数,逆元)的更多相关文章
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5698 大组合数取模(逆元)
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5698 瞬间移动 数学
瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...
- 2016 ACM/ICPC Asia Regional Shenyang Online 1003/HDU 5894 数学/组合数/逆元
hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K ...
- HDU 5698 瞬间移动
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 5698 瞬间移动(排列组合)
这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...
- hdu 5698(杨辉三角的性质+逆元)
---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...
- Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元
题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...
- HDU 6044--Limited Permutation(搜索+组合数+逆元)
题目链接 Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤ ...
随机推荐
- [No000016]为什么假期计划总是做不到?
- 003商城项目:数据库的创建以及ssm框架的整合
我们创建一个数据库.如下: 然后开始整合框架: 先给出整合框架的思路: 我们的Dao层用的是Mybatis,其实Mybatis与Spring整合要做的就是把他的数据库连接这部分全部交给Spring来 ...
- Linux 信号详解三(sleep,raise)
sleep()函数 .sleep()函数作用:让进程睡眠 .能被信号打断,然后处理信号函数以后,就不再睡眠,直接向下执行代码 .sleep函数的返回值是剩余秒数 //sleep 函数 #include ...
- eclipse/intellij idea 远程调试hadoop 2.6.0
很多hadoop初学者估计都我一样,由于没有足够的机器资源,只能在虚拟机里弄一个linux安装hadoop的伪分布,然后在host机上win7里使用eclipse或Intellj idea来写代码测试 ...
- java:快速文件分割及合并
文件分割与合并是一个常见需求,比如:上传大文件时,可以先分割成小块,传到服务器后,再进行合并.很多高大上的分布式文件系统(比如:google的GFS.taobao的TFS)里,也是按block为单位, ...
- flask+sqlite3+echarts2+ajax数据可视化--静态图
结构: /www | |-- /static | | | |-- echarts.js(当然还有echarts原dist目录下的文件(夹)) | |-- /templates | | | |-- in ...
- 安装Ubuntu时的硬盘分区方案
如果你准备在硬盘里只安装Ubuntu一个操作系统的话,建议你采用一个“/”.一个“swap”和一个“/home”的三分区方案:/ :10GB-15GB.swap:物理内存小于或等于 512MB,建议分 ...
- 简单谈谈dom解析xml和html
前言 文件对象模型(Document Object Model,简称DOM),是W3C组织推荐的处理可扩展标志语言的标准编程接口.html,xml都是基于这个模型构造的.这也是一个W3C推出的标准.j ...
- 开源:ASP.NET MVC+EF6+Bootstrap开发框架
前言 我在博客园潜水两三年了,在这里看过很多大神的文章,也学到了很多东西.可以说我是汲取着博客园的营养成长的. 想当年,我也是拿10个G的精神粮食从一个博客园大神那里换来一套开发框架,正式走上开发之路 ...
- 如何把自己打造成技术圈的 papi 酱
最近半年,一个叫papi酱的平胸女子连续在微博.朋友圈.创业圈刷屏,当之无愧成了中文互联网的第一大网红.呃,你以为我会巴拉巴拉说一堆网工创业的事?NO,今天想借papi酱的话题跟大家一起聊聊程序员如何 ...