【HDU 5698】瞬间移动(组合数,逆元)
x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步。就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i)。相乘起来。 假设$m\leq n$
$$\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^i=\sum_{i=1}^{m-2} C_{n-2}^i\cdot C_{m-2}^{m-2-i}=C_{n+m-4}^{m-2}$$
然后标程里求i的阶乘的逆是预处理的,主要这句:
$$f[i]=(M-M/i)\cdot f[M\%i]\%M$$
这里f即i的逆元,为什么可以这么求呢?
首先这里的M必须是质数。
$$M=k\cdot i+r \equiv 0 \pmod M$$
两边乘上$i^{-1}\cdot r^{-1}$(如果M不是质数,r就可能为0)
$$\begin{eqnarray} k\cdot r^{-1}+i^{-1} &\equiv& 0 &\pmod M\\
i^{-1} &\equiv& -k\cdot r^{-1} &\pmod M\\
i^{-1} &\equiv& M-\left\lfloor\frac{M}{i}\right\rfloor\cdot \left(M\bmod i\right)^{-1} &\pmod M \end{eqnarray}$$
代码
#include<cstdio>
#define M 1000000007
#define N 200001
#define ll long long
ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
int n,m;
ll C(ll a,ll b){
return fac[a]*inv[b]%M*inv[a-b]%M;
}
int main(){
for(int i=2;i<N;i++){
fac[i]=fac[i-1]*i%M;
f[i]=(M-M/i)*f[M%i]%M;
inv[i]=inv[i-1]*f[i]%M;
}
while(~scanf("%d%d",&n,&m))
printf("%lld\n",C(m+n-4,m-2));
}
【HDU 5698】瞬间移动(组合数,逆元)的更多相关文章
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5698 大组合数取模(逆元)
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5698 瞬间移动 数学
瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...
- 2016 ACM/ICPC Asia Regional Shenyang Online 1003/HDU 5894 数学/组合数/逆元
hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K ...
- HDU 5698 瞬间移动
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 5698 瞬间移动(排列组合)
这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...
- hdu 5698(杨辉三角的性质+逆元)
---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...
- Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元
题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...
- HDU 6044--Limited Permutation(搜索+组合数+逆元)
题目链接 Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤ ...
随机推荐
- EF的入门使用 (电影管理)
控制器代码: public class HomeController : Controller { private NewDBContext ndc = new NewDBContext(); pub ...
- oracle中substr() instr() 用法
--substr(字符串,截取开始位置,截取长度)=返回截取的字 ,) from dual;--返回结果为:m ,) from dual;--返回结果为:m--说明0和1都表示截取的位置为第一个字符 ...
- linux运维中的命令梳理(二)
回想起来,从事linux运维工作已近5年之久了,日常工作中会用到很多常规命令,之前简单罗列了一些命令:http://www.cnblogs.com/kevingrace/p/5985486.html今 ...
- PHP核心技术与最佳实践--笔记
<?php error_reporting(E_ALL); /* php 5.3引入 延迟静态绑定 */ /* php5.4引入trait,用来实现多层继承 trait Hello{} trai ...
- struts2 异常处理3板斧
板斧1:找不到action的错误 在struts.xml中参考如下配置 <struts> ... <package name="default" namespac ...
- ThreadLocal原理及其实际应用
前言 java猿在面试中,经常会被问到1个问题: java实现同步有哪几种方式? 大家一般都会回答使用synchronized, 那么还有其他方式吗? 答案是肯定的, 另外一种方式也就是本文要说的Th ...
- Qt 学习笔记 TreeWidget 增删改
在窗体上放一个TreeWidget控件和四个PushButton加一个Horizontal Spacer 布局如图 给树添加元素节点的方法和实现 .h文件 QTreeWidgetItem * AddT ...
- EF 相见恨晚的Attach方法
一个偶然的机会,让我注意了EF 的Attach方法,于是深入了解让我大吃一惊 在我所参与的项目中所有的更新操作与删除操作都是把原对象加载出来后,再做处理,然后再保存到数据库,这样的操作不缺点在于每一次 ...
- ASP.NET MVC3入门教程之环境搭建
本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=90&extra=page%3D1 什么是ASP.NET MVC ...
- 常用hadoop web
http://localhost:50070 Hadoop服务 http://localhost:8088/ 集群中的所有应用程序 http://localhost:16010 hbase