Flume NG是一个分布式、可靠、可用的系统,它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。由原来的Flume OG到现在的Flume NG,进行了架构重构,并且现在NG版本完全不兼容原来的OG版本。经过架构重构后,Flume NG更像是一个轻量的小工具,非常简单,容易适应各种方式日志收集,并支持failover和负载均衡。

架构设计要点

Flume的架构主要有一下几个核心概念:

  • Event:一个数据单元,带有一个可选的消息头
  • Flow:Event从源点到达目的点的迁移的抽象
  • Client:操作位于源点处的Event,将其发送到Flume Agent
  • Agent:一个独立的Flume进程,包含组件Source、Channel、Sink
  • Source:用来消费传递到该组件的Event
  • Channel:中转Event的一个临时存储,保存有Source组件传递过来的Event
  • Sink:从Channel中读取并移除Event,将Event传递到Flow Pipeline中的下一个Agent(如果有的话)

Flume NG架构,如图所示:

外部系统产生日志,直接通过Flume的Agent的Source组件将事件(如日志行)发送到中间临时的channel组件,最后传递给Sink组件,HDFS Sink组件可以直接把数据存储到HDFS集群上。
一个最基本Flow的配置,格式如下:

01 # list the sources, sinks and channels for the agent
02 <Agent>.sources = <Source1> <Source2>
03 <Agent>.sinks = <Sink1> <Sink2>
04 <Agent>.channels = <Channel1> <Channel2>
05  
06 # set channel for source
07 <Agent>.sources.<Source1>.channels = <Channel1> <Channel2> ...
08 <Agent>.sources.<Source2>.channels = <Channel1> <Channel2> ...
09  
10 # set channel for sink
11 <Agent>.sinks.<Sink1>.channel = <Channel1>
12 <Agent>.sinks.<Sink2>.channel = <Channel2>

尖括号里面的,我们可以根据实际需求或业务来修改名称。下面详细说明:
表示配置一个Agent的名称,一个Agent肯定有一个名称。与是Agent的Source组件的名称,消费传递过来的Event。与是Agent的Channel组件的名称。与是Agent的Sink组件的名称,从Channel中消费(移除)Event。
上面配置内容中,第一组中配置Source、Sink、Channel,它们的值可以有1个或者多个;第二组中配置Source将把数据存储(Put)到哪一个Channel中,可以存储到1个或多个Channel中,同一个Source将数据存储到多个Channel中,实际上是Replication;第三组中配置Sink从哪一个Channel中取(Task)数据,一个Sink只能从一个Channel中取数据。
下面,根据官网文档,我们展示几种Flow Pipeline,各自适应于什么样的应用场景:

  • 多个Agent顺序连接


可以将多个Agent顺序连接起来,将最初的数据源经过收集,存储到最终的存储系统中。这是最简单的情况,一般情况下,应该控制这种顺序连接的Agent的数量,因为数据流经的路径变长了,如果不考虑failover的话,出现故障将影响整个Flow上的Agent收集服务。

  • 多个Agent的数据汇聚到同一个Agent


这种情况应用的场景比较多,比如要收集Web网站的用户行为日志,Web网站为了可用性使用的负载均衡的集群模式,每个节点都产生用户行为日志,可以为每个节点都配置一个Agent来单独收集日志数据,然后多个Agent将数据最终汇聚到一个用来存储数据存储系统,如HDFS上。

  • 多路(Multiplexing)Agent


这种模式,有两种方式,一种是用来复制(Replication),另一种是用来分流(Multiplexing)。Replication方式,可以将最前端的数据源复制多份,分别传递到多个channel中,每个channel接收到的数据都是相同的,配置格式,如下所示:

01 # List the sources, sinks and channels for the agent
02 <Agent>.sources = <Source1>
03 <Agent>.sinks = <Sink1> <Sink2>
04 <Agent>.channels = <Channel1> <Channel2>
05  
06 # set list of channels for source (separated by space)
07 <Agent>.sources.<Source1>.channels = <Channel1> <Channel2>
08  
09 # set channel for sinks
10 <Agent>.sinks.<Sink1>.channel = <Channel1>
11 <Agent>.sinks.<Sink2>.channel = <Channel2>
12  
13 <Agent>.sources.<Source1>.selector.type = replicating

上面指定了selector的type的值为replication,其他的配置没有指定,使用的Replication方式,Source1会将数据分别存储到Channel1和Channel2,这两个channel里面存储的数据是相同的,然后数据被传递到Sink1和Sink2。
Multiplexing方式,selector可以根据header的值来确定数据传递到哪一个channel,配置格式,如下所示:

1 # Mapping for multiplexing selector
2 <Agent>.sources.<Source1>.selector.type = multiplexing
3 <Agent>.sources.<Source1>.selector.header = <someHeader>
4 <Agent>.sources.<Source1>.selector.mapping.<Value1> = <Channel1>
5 <Agent>.sources.<Source1>.selector.mapping.<Value2> = <Channel1> <Channel2>
6 <Agent>.sources.<Source1>.selector.mapping.<Value3> = <Channel2>
7 #...
8  
9 <Agent>.sources.<Source1>.selector.default = <Channel2>

上面selector的type的值为multiplexing,同时配置selector的header信息,还配置了多个selector的mapping的值,即header的值:如果header的值为Value1、Value2,数据从Source1路由到Channel1;如果header的值为Value2、Value3,数据从Source1路由到Channel2。

  • 实现load balance功能


Load balancing Sink Processor能够实现load balance功能,上图Agent1是一个路由节点,负责将Channel暂存的Event均衡到对应的多个Sink组件上,而每个Sink组件分别连接到一个独立的Agent上,示例配置,如下所示:

1 a1.sinkgroups = g1
2 a1.sinkgroups.g1.sinks = k1 k2 k3
3 a1.sinkgroups.g1.processor.type = load_balance
4 a1.sinkgroups.g1.processor.backoff = true
5 a1.sinkgroups.g1.processor.selector = round_robin
6 a1.sinkgroups.g1.processor.selector.maxTimeOut=10000
  • 实现failover能

Failover Sink Processor能够实现failover功能,具体流程类似load balance,但是内部处理机制与load balance完全不同:Failover Sink Processor维护一个优先级Sink组件列表,只要有一个Sink组件可用,Event就被传递到下一个组件。如果一个Sink能够成功处理Event,则会加入到一个Pool中,否则会被移出Pool并计算失败次数,设置一个惩罚因子,示例配置如下所示:

1 a1.sinkgroups = g1
2 a1.sinkgroups.g1.sinks = k1 k2 k3
3 a1.sinkgroups.g1.processor.type = failover
4 a1.sinkgroups.g1.processor.priority.k1 = 5
5 a1.sinkgroups.g1.processor.priority.k2 = 7
6 a1.sinkgroups.g1.processor.priority.k3 = 6
7 a1.sinkgroups.g1.processor.maxpenalty = 20000

基本功能

我们看一下,Flume NG都支持哪些功能(目前最新版本是1.5.0.1),了解它的功能集合,能够让我们在应用中更好地选择使用哪一种方案。说明Flume NG的功能,实际还是围绕着Agent的三个组件Source、Channel、Sink来看它能够支持哪些技术或协议。我们不再对各个组件支持的协议详细配置进行说明,通过列表的方式分别对三个组件进行概要说明:

  • Flume Source
Source类型 说明
Avro Source 支持Avro协议(实际上是Avro RPC),内置支持
Thrift Source 支持Thrift协议,内置支持
Exec Source 基于Unix的command在标准输出上生产数据
JMS Source 从JMS系统(消息、主题)中读取数据,ActiveMQ已经测试过
Spooling Directory Source 监控指定目录内数据变更
Twitter 1% firehose Source 通过API持续下载Twitter数据,试验性质
Netcat Source 监控某个端口,将流经端口的每一个文本行数据作为Event输入
Sequence Generator Source 序列生成器数据源,生产序列数据
Syslog Sources 读取syslog数据,产生Event,支持UDP和TCP两种协议
HTTP Source 基于HTTP POST或GET方式的数据源,支持JSON、BLOB表示形式
Legacy Sources 兼容老的Flume OG中Source(0.9.x版本)
  • Flume Channel
Channel类型 说明
Memory Channel Event数据存储在内存中
JDBC Channel Event数据存储在持久化存储中,当前Flume Channel内置支持Derby
File Channel Event数据存储在磁盘文件中
Spillable Memory Channel Event数据存储在内存中和磁盘上,当内存队列满了,会持久化到磁盘文件(当前试验性的,不建议生产环境使用)
Pseudo Transaction Channel 测试用途
Custom Channel 自定义Channel实现
  • Flume Sink
Sink类型 说明
HDFS Sink 数据写入HDFS
Logger Sink 数据写入日志文件
Avro Sink 数据被转换成Avro Event,然后发送到配置的RPC端口上
Thrift Sink 数据被转换成Thrift Event,然后发送到配置的RPC端口上
IRC Sink 数据在IRC上进行回放
File Roll Sink 存储数据到本地文件系统
Null Sink 丢弃到所有数据
HBase Sink 数据写入HBase数据库
Morphline Solr Sink 数据发送到Solr搜索服务器(集群)
ElasticSearch Sink 数据发送到Elastic Search搜索服务器(集群)
Kite Dataset Sink 写数据到Kite Dataset,试验性质的
Custom Sink 自定义Sink实现

另外还有Channel Selector、Sink Processor、Event Serializer、Interceptor等组件,可以参考官网提供的用户手册。

应用实践

安装Flume NG非常简单,我们使用最新的1.5.0.1版本,执行如下命令:

1 cd /usr/local
3 tar xvzf apache-flume-1.5.0.1-bin.tar.gz
4 cd apache-flume-1.5.0.1-bin

如果需要使用到Hadoop集群,保证Hadoop相关的环境变量都已经正确配置,并且Hadoop集群可用。下面,通过一些实际的配置实例,来了解Flume的使用。为了简单期间,channel我们使用Memory类型的channel。

  • Avro Source+Memory Channel+Logger Sink

使用apache-flume-1.5.0.1自带的例子,使用Avro Source接收外部数据源,Logger作为sink,即通过Avro RPC调用,将数据缓存在channel中,然后通过Logger打印出调用发送的数据。
配置Agent,修改配置文件conf/flume-conf.properties,内容如下:

01 # Define a memory channel called ch1 on agent1
02 agent1.channels.ch1.type = memory
03  
04 # Define an Avro source called avro-source1 on agent1 and tell it
05 # to bind to 0.0.0.0:41414. Connect it to channel ch1.
06 agent1.sources.avro-source1.channels = ch1
07 agent1.sources.avro-source1.type = avro
08 agent1.sources.avro-source1.bind = 0.0.0.0
09 agent1.sources.avro-source1.port = 41414
10  
11 # Define a logger sink that simply logs all events it receives
12 # and connect it to the other end of the same channel.
13 agent1.sinks.log-sink1.channel = ch1
14 agent1.sinks.log-sink1.type = logger
15  
16 # Finally, now that we've defined all of our components, tell
17 # agent1 which ones we want to activate.
18 agent1.channels = ch1
19 agent1.channels.ch1.capacity = 1000
20 agent1.sources = avro-source1
21 agent1.sinks = log-sink1

首先,启动Agent进程:

1 bin/flume-ng agent -c ./conf/ -f conf/flume-conf.properties -Dflume.root.logger=DEBUG,console -n agent1

然后,启动Avro Client,发送数据:

1 bin/flume-ng avro-client -c ./conf/ -H 0.0.0.0 -p 41414 -F /usr/local/programs/logs/sync.log -Dflume.root.logger=DEBUG,console
  • Avro Source+Memory Channel+HDFS Sink

配置Agent,修改配置文件conf/flume-conf-hdfs.properties,内容如下:

01 # Define a source, channel, sink
02 agent1.sources = avro-source1
03 agent1.channels = ch1
04 agent1.sinks = hdfs-sink
05  
06 # Configure channel
07 agent1.channels.ch1.type = memory
08 agent1.channels.ch1.capacity = 1000000
09 agent1.channels.ch1.transactionCapacity = 500000
10  
11 # Define an Avro source called avro-source1 on agent1 and tell it
12 # to bind to 0.0.0.0:41414. Connect it to channel ch1.
13 agent1.sources.avro-source1.channels = ch1
14 agent1.sources.avro-source1.type = avro
15 agent1.sources.avro-source1.bind = 0.0.0.0
16 agent1.sources.avro-source1.port = 41414
17  
18 # Define a logger sink that simply logs all events it receives
19 # and connect it to the other end of the same channel.
20 agent1.sinks.hdfs-sink1.channel = ch1
21 agent1.sinks.hdfs-sink1.type = hdfs
22 agent1.sinks.hdfs-sink1.hdfs.path = hdfs://h1:8020/data/flume/
23 agent1.sinks.hdfs-sink1.hdfs.filePrefix = sync_file
24 agent1.sinks.hdfs-sink1.hdfs.fileSuffix = .log
25 agent1.sinks.hdfs-sink1.hdfs.rollSize = 1048576
26 agent1.sinks.hdfs-sink1.rollInterval = 0
27 agent1.sinks.hdfs-sink1.hdfs.rollCount = 0
28 agent1.sinks.hdfs-sink1.hdfs.batchSize = 1500
29 agent1.sinks.hdfs-sink1.hdfs.round = true
30 agent1.sinks.hdfs-sink1.hdfs.roundUnit = minute
31 agent1.sinks.hdfs-sink1.hdfs.threadsPoolSize = 25
32 agent1.sinks.hdfs-sink1.hdfs.useLocalTimeStamp = true
33 agent1.sinks.hdfs-sink1.hdfs.minBlockReplicas = 1
34 agent1.sinks.hdfs-sink1.fileType = SequenceFile
35 agent1.sinks.hdfs-sink1.writeFormat = TEXT

首先,启动Agent:

1 bin/flume-ng agent -c ./conf/ -f conf/flume-conf-hdfs.properties -Dflume.root.logger=INFO,console -n agent1

然后,启动Avro Client,发送数据:

1 bin/flume-ng avro-client -c ./conf/ -H 0.0.0.0 -p 41414 -F /usr/local/programs/logs/sync.log -Dflume.root.logger=DEBUG,console

可以查看同步到HDFS上的数据:

1 hdfs dfs -ls /data/flume

结果示例,如下所示:

1 -rw-r--r--   3 shirdrn supergroup    1377617 2014-09-16 14:35 /data/flume/sync_file.1410849320761.log
2 -rw-r--r--   3 shirdrn supergroup    1378137 2014-09-16 14:35 /data/flume/sync_file.1410849320762.log
3 -rw-r--r--   3 shirdrn supergroup     259148 2014-09-16 14:35 /data/flume/sync_file.1410849320763.log
  • Spooling Directory Source+Memory Channel+HDFS Sink

配置Agent,修改配置文件flume-conf-spool.properties,内容如下:

01 # Define source, channel, sink
02 agent1.sources = spool-source1
03 agent1.channels = ch1
04 agent1.sinks = hdfs-sink1
05  
06 # Configure channel
07 agent1.channels.ch1.type = memory
08 agent1.channels.ch1.capacity = 1000000
09 agent1.channels.ch1.transactionCapacity = 500000
10  
11 # Define and configure an Spool directory source
12 agent1.sources.spool-source1.channels = ch1
13 agent1.sources.spool-source1.type = spooldir
14 agent1.sources.spool-source1.spoolDir = /home/shirdrn/data/
15 agent1.sources.spool-source1.ignorePattern = event(_\d{4}\-\d{2}\-\d{2}_\d{2}_\d{2})?\.log(\.COMPLETED)?
16 agent1.sources.spool-source1.batchSize = 50
17 agent1.sources.spool-source1.inputCharset = UTF-8
18  
19 # Define and configure a hdfs sink
20 agent1.sinks.hdfs-sink1.channel = ch1
21 agent1.sinks.hdfs-sink1.type = hdfs
22 agent1.sinks.hdfs-sink1.hdfs.path = hdfs://h1:8020/data/flume/
23 agent1.sinks.hdfs-sink1.hdfs.filePrefix = event_%y-%m-%d_%H_%M_%S
24 agent1.sinks.hdfs-sink1.hdfs.fileSuffix = .log
25 agent1.sinks.hdfs-sink1.hdfs.rollSize = 1048576
26 agent1.sinks.hdfs-sink1.hdfs.rollCount = 0
27 agent1.sinks.hdfs-sink1.hdfs.batchSize = 1500
28 agent1.sinks.hdfs-sink1.hdfs.round = true
29 agent1.sinks.hdfs-sink1.hdfs.roundUnit = minute
30 agent1.sinks.hdfs-sink1.hdfs.threadsPoolSize = 25
31 agent1.sinks.hdfs-sink1.hdfs.useLocalTimeStamp = true
32 agent1.sinks.hdfs-sink1.hdfs.minBlockReplicas = 1
33 agent1.sinks.hdfs-sink1.fileType = SequenceFile
34 agent1.sinks.hdfs-sink1.writeFormat = TEXT
35 agent1.sinks.hdfs-sink1.rollInterval = 0

启动Agent进程,执行如下命令:

1 bin/flume-ng agent -c ./conf/ -f conf/flume-conf-spool.properties -Dflume.root.logger=INFO,console -n agent1

可以查看HDFS上同步过来的数据:

1 hdfs dfs -ls /data/flume

结果示例,如下所示:

01 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:52 /data/flume/event_14-09-17_10_52_00.1410922355094.log
02 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:52 /data/flume/event_14-09-17_10_52_00.1410922355095.log
03 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:52 /data/flume/event_14-09-17_10_52_00.1410922355096.log
04 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:52 /data/flume/event_14-09-17_10_52_00.1410922355097.log
05 -rw-r--r--   3 shirdrn supergroup       1530 2014-09-17 10:53 /data/flume/event_14-09-17_10_52_00.1410922355098.log
06 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:53 /data/flume/event_14-09-17_10_53_00.1410922380386.log
07 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:53 /data/flume/event_14-09-17_10_53_00.1410922380387.log
08 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:53 /data/flume/event_14-09-17_10_53_00.1410922380388.log
09 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:53 /data/flume/event_14-09-17_10_53_00.1410922380389.log
10 -rw-r--r--   3 shirdrn supergroup    1072265 2014-09-17 10:53 /data/flume/event_14-09-17_10_53_00.1410922380390.log
  • Exec Source+Memory Channel+File Roll Sink

配置Agent,修改配置文件flume-conf-file.properties,内容如下:

01 # Define source, channel, sink
02 agent1.sources = tail-source1
03 agent1.channels = ch1
04 agent1.sinks = file-sink1
05  
06 # Configure channel
07 agent1.channels.ch1.type = memory
08 agent1.channels.ch1.capacity = 1000000
09 agent1.channels.ch1.transactionCapacity = 500000
10  
11 # Define and configure an Exec source
12 agent1.sources.tail-source1.channels = ch1
13 agent1.sources.tail-source1.type = exec
14 agent1.sources.tail-source1.command = tail -F /home/shirdrn/data/event.log
15 agent1.sources.tail-source1.shell = /bin/sh -c
16 agent1.sources.tail-source1.batchSize = 50
17  
18 # Define and configure a File roll sink
19 # and connect it to the other end of the same channel.
20 agent1.sinks.file-sink1.channel = ch1
21 agent1.sinks.file-sink1.type = file_roll
22 agent1.sinks.file-sink1.batchSize = 100
23 agent1.sinks.file-sink1.serializer = TEXT
24 agent1.sinks.file-sink1.sink.directory = /home/shirdrn/sink_data

启动Agent进程,执行如下命令:

1 bin/flume-ng agent -c ./conf/ -f conf/flume-conf-file.properties -Dflume.root.logger=INFO,console -n agent1

可以查看File Roll Sink对应的本地文件系统目录/home/shirdrn/sink_data下,示例如下所示:

1 -rw-rw-r-- 1 shirdrn shirdrn 13944825 Sep 17 11:36 1410924990039-1
2 -rw-rw-r-- 1 shirdrn shirdrn 11288870 Sep 17 11:37 1410924990039-2
3 -rw-rw-r-- 1 shirdrn shirdrn        0 Sep 17 11:37 1410924990039-3
4 -rw-rw-r-- 1 shirdrn shirdrn 20517500 Sep 17 11:38 1410924990039-4
5 -rw-rw-r-- 1 shirdrn shirdrn 16343250 Sep 17 11:38 1410924990039-5

有关Flume NG更多配置及其说明,请参考官方用户手册,非常详细。

【转】Flume(NG)架构设计要点及配置实践的更多相关文章

  1. Atitit  文件上传  架构设计 实现机制 解决方案  实践java php c#.net js javascript  c++ python

    Atitit  文件上传  架构设计 实现机制 解决方案  实践java php c#.net js javascript  c++ python 1. 上传的几点要求2 1.1. 本地预览2 1.2 ...

  2. Hadoop YARN架构设计要点

    YARN是开源项目Hadoop的一个资源管理系统,最初设计是为了解决Hadoop中MapReduce计算框架中的资源管理问题,但是现在它已经是一个更加通用的资源管理系统,可以把MapReduce计算框 ...

  3. 高可用Hadoop平台-Flume NG实战图解篇

    1.概述 今天补充一篇关于Flume的博客,前面在讲解高可用的Hadoop平台的时候遗漏了这篇,本篇博客为大家讲述以下内容: Flume NG简述 单点Flume NG搭建.运行 高可用Flume N ...

  4. HRMS(人力资源管理系统)-SaaS架构设计-概要设计实践

    一.开篇 前期我们针对架构准备阶段及需求分析这块我们写了2篇内容<HRMS(人力资源管理系统)-从单机应用到SaaS应用-架构分析(功能性.非功能性.关键约束)-上篇><HRMS(人 ...

  5. Flume NG Getting Started(Flume NG 新手入门指南)

    Flume NG Getting Started(Flume NG 新手入门指南)翻译 新手入门 Flume NG是什么? 有什么改变? 获得Flume NG 从源码构建 配置 flume-ng全局选 ...

  6. Flume NG简介及配置

    Flume下载地址:http://apache.fayea.com/flume/ 常用的分布式日志收集系统: Apache Flume. Facebook Scribe. Apache Chukwa ...

  7. Flume NG 简介及配置实战

    Flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 clo ...

  8. FLUME NG的基本架构

    Flume简介 Flume 是一个cloudera提供的 高可用高可靠,分布式的海量日志收集聚合传输系统.原名是 Flume OG (original generation),但随着 FLume 功能 ...

  9. ZooKeeper架构设计及其应用要点

    问题导读: 1.ZooKeeper的数据模型是什么 ?2.ZooKeeper应用有哪些陷阱 ?3.每个节点(ZNode)中存储的是什么?4.一个ZNode维护了一个状态结构都包含了什么?5.ZNode ...

随机推荐

  1. SQLite3 学习笔记

    1.数据存储方式 Plist(NSArray\NSDictionary) Preference(偏好设置\NSUserDefaults) NSCoding(NSKeyedArchiver\NSkeye ...

  2. [分类算法] :SVM支持向量机

    Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. S ...

  3. Linux 简介

    转载:http://c.biancheng.net/cpp/html/2726.html Linux简介 严格的来讲,Linux 不算是一个操作系统,只是一个 Linux 系统中的内核,即计算机软件与 ...

  4. 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573   ...

  5. CSS3盒模型display初探(display:box/display:flex)

    可以实现水平等分切割等.日后在研究,做个记录. 首先要声明:display:box,像谷歌浏览器要加前缀识别码:display:-webkit-box; 然后才开始使用其属性,同时也是要带上前缀识别码 ...

  6. HDU 1846 Brave Game(巴什博弈)

    题目链接: 传送门 Brave Game Time Limit: 1000MS     Memory Limit: 65536K 题目描述 各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的: ...

  7. Java多线程问题总结

    前言 Java多线程分类中写了21篇多线程的文章,21篇文章的内容很多,个人认为,学习,内容越多.越杂的知识,越需要进行深刻的总结,这样才能记忆深刻,将知识变成自己的.这篇文章主要是对多线程的问题进行 ...

  8. 对iOS中Delegate的理解

    首先 协议protocol 和委托delegate 是两个完全不同的概念  放在一起说 是因为我们总是在同一个头文件里看到它们: 首先解释一下什么是委托 :举个例子 ,我工作的时候给你打电话,让你帮我 ...

  9. angular评论星级指令

    地址: https://github.com/happen-zh/myStar 支持最大数,是否必填,回调,是否只读

  10. BZOJ2960: 跨平面

    从一条边出发遍历,每次找旋转角度最小的一条边作为下一条边,直到回到出发的边,就得到了一个区域.这样建出对偶图后跑不定根的最小树形图就行了. #include<bits/stdc++.h> ...