Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 14380    Accepted Submission(s): 4044 Special Judge

Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4  5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8  9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12 13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x             r->            d->            r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and  frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three  arrangement.

 
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 
1 2 3  x 4 6  7 5 8 
is described by this list: 
1 2 3 x 4 6 7 5 8
 
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
 
Sample Input
2 3 4 1 5 x 7 6 8
 
Sample Output
ullddrurdllurdruldr
 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<ctype.h>
typedef long long ll ;
int map[][] ;
char mp[] ;
int l , r , l1 , r1 ;
int flag ;
int anti ;
int move[][] = {{,} , {-,} , {,} , {,-}} ;
const int mod = ;
struct node
{
int x , y , nxt ;
int map[][] ;
} b[mod];
struct hash
{
ll w , id ;
int nxt ;
}e[mod * ];
int H[mod * ] , E ; void insert (ll x , int id)
{
int y = x % mod ;
if (y < ) y += mod ;
e[++ E].w = x ;
e[E].id = id ;
e[E].nxt = H[y] ;
H[y] = E ;
} int find (ll x)
{
int y = x % mod ;
if (y < ) y += mod ;
for (int i = H[y] ; ~ i ; i = e[i].nxt ) {
if (e[i].w == x)
return e[i].id ;
}
return - ;
} void table ()
{
node ans , tmp ;
E = - ; memset (H , - , sizeof (H) ) ;
l1 = , r1= ;
b[l1].x = , b[l1].y = , b[l1].nxt = - ;
ll sum = ;
for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) b[l1].map[i][j] = i * + j + ;
insert ( , ) ;
while (l1 != r1) {
ans = b[l1] ;
for (int i = ; i < ; i ++) {
tmp.x = ans.x + move[i][] ; tmp.y = ans.y + move[i][] ;
if (tmp.x < || tmp.y < || tmp.x >= || tmp.y >= ) continue ;
for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) tmp.map[i][j] = ans.map[i][j] ;
std::swap (tmp.map[ans.x][ans.y] , tmp.map[tmp.x][tmp.y]) ;
sum = ;
for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) sum = sum * + tmp.map[i][j] ;
if (find (sum) != - ) continue ;
insert (sum , r1 ) ;
tmp.nxt = l1 ;
b[r1 ++] = tmp ;
}
l1 ++ ;
}
} void solve (int u)
{
if (u == -) return ;
int t = b[u].nxt ;
if (t != -) {
int x = b[t].x - b[u].x , y = b[t].y - b[u].y ;
if (x == ) printf ("d") ;
else if (x == -) printf ("u") ;
else if (y == ) printf ("r") ;
else if (y == - ) printf ("l") ;
}
solve (t) ;
} int main ()
{
freopen ("a.txt" , "r" , stdin ) ;
table () ;
while (gets (mp) != NULL) {
int tot = ;
for (int i = ; mp[i] != '\0' ; i ++) {
if (mp[i] != ' ') {
if (isdigit (mp[i])) {
map[tot / ][tot % ] = mp[i] - '' ;
}
else map[tot / ][tot % ] = ;
tot ++ ;
}
}
ll sum = ;
for (int i = ; i < ; i ++) for (int j = ; j < ; j ++) sum = sum * + map[i][j] ;
anti = find (sum) ;
if (anti != -) solve (anti) ;
else printf ("unsolvable") ;
puts ("") ;
}
return ;
}

打表思路很简单,也是为了对抗unsolve这种情况,从123456789最终状态产生所有状态,即可.

奇偶逆序:

逆序数:也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序总数叫做这个排列的逆序数。

结论:(是除去移动元素,(这里是9))

对源状态A与目标状态B进行规范化,使得两矩阵的元素0的位置相同;记为新的源状态A'与目标状态B';
若A'与B'的逆序对的奇偶性相同(即A'与B1的逆序对的奇偶性相同),则A'必定可能转化为B',即A可以转化到B; 
若A'与B'的逆序对的奇偶性不同(即A'与B2的逆序对的奇偶性相同),则A'必定不可能转化为B',即A不可以转化到B;

也就是为了对抗unsolve.

然后用双广就OK了.

hdu.1043.Eight (打表 || 双广 + 奇偶逆序)的更多相关文章

  1. Eight hdu 1043 八数码问题 双搜

    Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  2. POJ-1077 HDU 1043 HDU 3567 Eight (BFS预处理+康拓展开)

    思路: 这三个题是一个比一个令人纠结呀. POJ-1077 爆搜可以过,94ms,注意不能用map就是了. #include<iostream> #include<stack> ...

  3. HDU 1403 Eight&POJ 1077(康拖,A* ,BFS,双广)

    Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  4. hdu 1401(单广各种卡的搜索题||双广秒速)

    Solitaire Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  5. HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  6. HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  7. HDU 1043 Eight 八数码问题 A*算法(经典问题)

    HDU 1043 Eight 八数码问题(经典问题) 题意 经典问题,就不再进行解释了. 这里主要是给你一个状态,然后要你求其到达\(1,2,3,4,5,6,7,8,x\)的转移路径. 解题思路 这里 ...

  8. HDU 1043 八数码(八境界)

    看了这篇博客的讲解,挺不错的.http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 判断无解的情况(写完七种境界才发现有直接判 ...

  9. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

随机推荐

  1. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  2. Linux Basic --- The First Character in The File Properity

    -rw-r--r-- [d]: content [-]: file [l]: link file [b]: interface device for storage in a device file ...

  3. 复习---JS-Array 对象

    要开始做第一个js练习了.前面三个小题都是数组的.先来复习一下数组.如下是W3C上面的关于数组的内容. 之前笔记中的内容:http://www.cnblogs.com/lal-fighting/p/5 ...

  4. javascript之简单的选择排序法

    基本思想: 比对数组中元素,相等者输出元素在数组的下标,否则就输出没找到! 代码如下: function Orderseach(array,findVal){ var temp = false; // ...

  5. C++中int,float,string,char*的转换(待续)

    //float转string char a[100]; float b = 1.234; sprintf(a, "%f", b); string result(a); //int转 ...

  6. docker image重命名

    use docker tag command tag Tag an image into a repository

  7. MYSQL数据库的常用数据类型

    列类型 说明 tinyint/smallint/mediumint int(integer)/bigint 1字节.2字节.3字节.4字节.8字节整数,又可分有符号和无符号两种.这些整数类型的区别仅仅 ...

  8. eclipse下遇到 无法解析类型 javax.servlet.http.HttpServletRequest

    参考:http://bbs.csdn.net/topics/370187655?page=1   java.lang.Error: 无法解析的编译问题: 无法解析类型 javax.servlet.ht ...

  9. JavaWeb学习笔记——开发动态WEB资源(六)ServletConfig和ServletContext

    1.只有在第一次请求服务器产生实例的时候才会调用init()方法,有一种办法能在服务器一启动的时候就加载init()方法. 即服务器启动即加载Servlet,且按数字大小顺序实例化Servlet. 方 ...

  10. 入门:PHP:hello world!

    <?php echo 'hello'."\n"." world!"."good night!";//2016.09.18 22:57? ...