传送门

Description

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After several thrilling events we find her in the first station of Algorithms City Metro, examining the time table. The Algorithms City Metro consists of a single line with trains running both ways, so its time table is not complicated. Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria knows that a powerful organization is after her. She also knows that while waiting at a station, she is at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running trains as much as possible, even if this means traveling backward and forward. Maria needs to know a schedule with minimal waiting time at the stations that gets her to the last station in time for her appointment. You must write a program that finds the total waiting time in a best schedule for Maria. The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains move in both directions: from the first station to the last station and from the last station back to the first station. The time required for a train to travel between two consecutive stations is fixed since all trains move at the same speed. Trains make a very short stop at each station, which you can ignore for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the trains involved stop in that station at the same time.

Input

The input file contains several test cases. Each test case consists of seven lines with information as follows. Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations. Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment. Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains between two consecutive stations: t1 represents the travel time between the first two stations, t2 the time between the second and the third station, and so on. Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first station. Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which trains depart from the first station. Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th station. Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which trains depart from the N-th station. The last case is followed by a line containing a single zero.

Output

For each test case, print a line containing the case number (starting with 1) and an integer representing the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is unable to make the appointment. Use the format of the sample output.

Sample Input

4 55 5 10 15 4 0 5 10 20 4 0 5 10 15 4 18 1 2 3 5 0 3 6 10 12 6 0 3 5 7 12 15 2 30 20 1 20 7 1 3 5 7 11 13 17 0

Sample Output

Case Number 1: 5

Case Number 2: 0

Case Number 3: impossible

思路

  题意:

  某城市的地铁是线性的,有n(2≤n≤50)个车站,从左到右的编号为1~N.有M1辆列车从第一站开始往右开,还有M2辆列车从第n站开始往左开。在时刻0,Mario从第1站出发,目的是在时刻T(0≤T≤200)会见车站n的一个间谍。在车站等车容易被抓,所以她决定尽量躲在开动的火车上,让在车站等待的总时间尽量短。列车靠站停车时间忽略不计,且Mario身手敏捷,即使两辆方向不同的列车在同一时间靠站,Mario也能完成换乘。求最少等待时间。

  思路:

  Mario在某个状态都有三种决策:

    • 等一分钟。
    • 搭乘往右开的车(如果有)
    • 搭乘往左开的车(如果有)

  影响到当前决策的只有当前时间和所处的车站,所以可以用d(i,j)表示时刻i,你在车站j,最少还需要等待多长时间。边界条件d(T,n) = 0,其他d(T,j)为正无穷。

 

/*
 *dp[i][j]表示时刻i,在车站j,最少还需要等待多长时间
 *has_train[t][i][0]表示时刻t,在车站i是否有向右开的火车
 *has_train[t][i][1]表示时刻t,在车站i是否有向左开的火车
 */
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 55;
const int maxt = 205;
const int INF = 0x3f3f3f3f;
int t[maxn],has_train[maxt][maxn][2],dp[maxt][maxn];
int main()
{
	int n,Case = 0;
	while (~scanf("%d",&n) && n)
	{
		int T,M1,M2,d;
		memset(has_train,0,sizeof(has_train));
		memset(dp,0,sizeof(dp));
		scanf("%d",&T);
		for (int i = 1;i < n;i++)	scanf("%d",&t[i]);
		scanf("%d",&M1);
		while (M1--)
		{
			scanf("%d",&d);
			for (int j = 1;j < n;j++)
			{
				if (d <= T)	has_train[d][j][0] = 1;
				d += t[j];
			}
		}
		scanf("%d",&M2);
		while (M2--)
		{
			scanf("%d",&d);
			for (int j = n - 1;j > 0;j--)
			{
				if (d <= T)	has_train[d][j+1][1] = 1;
				d += t[j];
			}
		}
		for (int i = 1;i < n;i++)	dp[T][i] = INF;
		dp[T][n] = 0;
		for (int i = T - 1;i >= 0;i--)
		{
			for (int j =1;j <= n;j++)
			{
				dp[i][j] = dp[i+1][j] + 1;
				if (j < n && has_train[i][j][0] && i + t[j] <= T)	dp[i][j] = min(dp[i][j],dp[i+t[j]][j+1]);
				if (j > 1 && has_train[i][j][1] && i + t[j-1] <= T)	dp[i][j] = min(dp[i][j],dp[i+t[j-1]][j-1]);
			}
		}
		printf("Case Number %d: ",++Case);
		dp[0][1]>=INF ? printf("impossible\n"):printf("%d\n",dp[0][1]);
	}
	return 0;
}

  

UVa 1025 A Spy in the Metro(动态规划)的更多相关文章

  1. UVA - 1025 A Spy in the Metro[DP DAG]

    UVA - 1025 A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especia ...

  2. UVA 1025 -- A Spy in the Metro (DP)

     UVA 1025 -- A Spy in the Metro  题意:  一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, ...

  3. uva 1025 A Spy in the Metro 解题报告

    A Spy in the Metro Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug Secr ...

  4. UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)

    传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...

  5. DAG的动态规划 (UVA 1025 A Spy in the Metro)

    第一遍,刘汝佳提示+题解:回头再看!!! POINT: dp[time][sta]; 在time时刻在车站sta还需要最少等待多长时间: 终点的状态很确定必然是的 dp[T][N] = 0 ---即在 ...

  6. World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)

    分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...

  7. UVa 1025 A Spy in the Metro (DP动态规划)

    题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...

  8. UVA 1025 A Spy in the Metro 【DAG上DP/逆推/三维标记数组+二维状态数组】

    Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After s ...

  9. uva 1025 A Spy int the Metro

    https://vjudge.net/problem/UVA-1025 看见spy忍俊不禁的想起省赛时不知道spy啥意思 ( >_< f[i][j]表示i时刻处于j站所需的最少等待时间,有 ...

随机推荐

  1. Java 生成 UUID

    1.UUID 简介 UUID含义是通用唯一识别码 (Universally Unique Identifier),这是一个软件建构的标准,也是被开源软件基金会 (Open Software Found ...

  2. DTCMS插件的制作实例电子资源管理(二)Admin后台页面编写

    总目录 插件目录结构(一) Admin后台页面编写(二) 前台模板页编写(三) URL重写(四) 本实例旨在以一个实际的项目中的例子来介绍如何在dtcms中制作插件,本系列文章非入门教程,部分逻辑实现 ...

  3. Chrome 监听 console 打开

    这个算是 Chrome only 其他的我没测试,也不想测试.因为我的控制台脚本仅仅在 Chrome 下加载. 如果你需要全平台,那么这肯定不是你需要的结果. 需求 其实我很早就想折腾这个了,但是,, ...

  4. express+session实现简易身份认证

    本文摘录自<Nodejs学习笔记>,更多章节及更新,请访问 github主页地址.欢迎加群交流,群号 197339705. 文章概览 本文基于express.express-session ...

  5. ModernUI教程:MEF应用向导

    本文主要说明在Modern UI框架下使用MEF的必要步骤,关于MEF请自行脑补. MEF-INTO-MUI实例代码下载: MefMuiApp.zip 1:创建一个导出属性 ModernFrame用来 ...

  6. [BZOJ1263][SCOI2006]整数划分(数学+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1263 分析:数学老师上课讲过啦= =,就是尽可能3越多越好.然后就写个高精度就行了.

  7. 使用Topshelf创建Windows服务

    概述 Topshelf是创建Windows服务的另一种方法,老外的一篇文章Create a .NET Windows Service in 5 steps with Topshelf通过5个步骤详细的 ...

  8. 如何设置div高度为100%

    div高度通常都是固定值,直接将div高度设为100%是无效的,那么如何设置才能有效呢? 直接给div设置height:100%即可,无效的原因一定是父元素的高度为0,最常见的就是给body的直接元素 ...

  9. mysql 数据库隔离级别

    select @@tx_isolation; 4种隔离级别 1.read uncommitted 2.read committed 3.repeatable read(MySQL默认隔离级别) 4.  ...

  10. AOP 注入失败的问题

    启用了AOP 后,报这样的类似错误: Error creating bean with name 'bpmpSysUserService': Injection of autowired depend ...