UVa 1025 A Spy in the Metro(动态规划)
Description
Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After several thrilling events we find her in the first station of Algorithms City Metro, examining the time table. The Algorithms City Metro consists of a single line with trains running both ways, so its time table is not complicated. Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria knows that a powerful organization is after her. She also knows that while waiting at a station, she is at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running trains as much as possible, even if this means traveling backward and forward. Maria needs to know a schedule with minimal waiting time at the stations that gets her to the last station in time for her appointment. You must write a program that finds the total waiting time in a best schedule for Maria. The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains move in both directions: from the first station to the last station and from the last station back to the first station. The time required for a train to travel between two consecutive stations is fixed since all trains move at the same speed. Trains make a very short stop at each station, which you can ignore for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the trains involved stop in that station at the same time.
Input
The input file contains several test cases. Each test case consists of seven lines with information as follows. Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations. Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment. Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains between two consecutive stations: t1 represents the travel time between the first two stations, t2 the time between the second and the third station, and so on. Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first station. Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which trains depart from the first station. Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th station. Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which trains depart from the N-th station. The last case is followed by a line containing a single zero.
Output
For each test case, print a line containing the case number (starting with 1) and an integer representing the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is unable to make the appointment. Use the format of the sample output.
Sample Input
4 55 5 10 15 4 0 5 10 20 4 0 5 10 15 4 18 1 2 3 5 0 3 6 10 12 6 0 3 5 7 12 15 2 30 20 1 20 7 1 3 5 7 11 13 17 0
Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible
思路
题意:
某城市的地铁是线性的,有n(2≤n≤50)个车站,从左到右的编号为1~N.有M1辆列车从第一站开始往右开,还有M2辆列车从第n站开始往左开。在时刻0,Mario从第1站出发,目的是在时刻T(0≤T≤200)会见车站n的一个间谍。在车站等车容易被抓,所以她决定尽量躲在开动的火车上,让在车站等待的总时间尽量短。列车靠站停车时间忽略不计,且Mario身手敏捷,即使两辆方向不同的列车在同一时间靠站,Mario也能完成换乘。求最少等待时间。
思路:
Mario在某个状态都有三种决策:
- 等一分钟。
- 搭乘往右开的车(如果有)
- 搭乘往左开的车(如果有)
影响到当前决策的只有当前时间和所处的车站,所以可以用d(i,j)表示时刻i,你在车站j,最少还需要等待多长时间。边界条件d(T,n) = 0,其他d(T,j)为正无穷。
/* *dp[i][j]表示时刻i,在车站j,最少还需要等待多长时间 *has_train[t][i][0]表示时刻t,在车站i是否有向右开的火车 *has_train[t][i][1]表示时刻t,在车站i是否有向左开的火车 */ #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn = 55; const int maxt = 205; const int INF = 0x3f3f3f3f; int t[maxn],has_train[maxt][maxn][2],dp[maxt][maxn]; int main() { int n,Case = 0; while (~scanf("%d",&n) && n) { int T,M1,M2,d; memset(has_train,0,sizeof(has_train)); memset(dp,0,sizeof(dp)); scanf("%d",&T); for (int i = 1;i < n;i++) scanf("%d",&t[i]); scanf("%d",&M1); while (M1--) { scanf("%d",&d); for (int j = 1;j < n;j++) { if (d <= T) has_train[d][j][0] = 1; d += t[j]; } } scanf("%d",&M2); while (M2--) { scanf("%d",&d); for (int j = n - 1;j > 0;j--) { if (d <= T) has_train[d][j+1][1] = 1; d += t[j]; } } for (int i = 1;i < n;i++) dp[T][i] = INF; dp[T][n] = 0; for (int i = T - 1;i >= 0;i--) { for (int j =1;j <= n;j++) { dp[i][j] = dp[i+1][j] + 1; if (j < n && has_train[i][j][0] && i + t[j] <= T) dp[i][j] = min(dp[i][j],dp[i+t[j]][j+1]); if (j > 1 && has_train[i][j][1] && i + t[j-1] <= T) dp[i][j] = min(dp[i][j],dp[i+t[j-1]][j-1]); } } printf("Case Number %d: ",++Case); dp[0][1]>=INF ? printf("impossible\n"):printf("%d\n",dp[0][1]); } return 0; }
UVa 1025 A Spy in the Metro(动态规划)的更多相关文章
- UVA - 1025 A Spy in the Metro[DP DAG]
UVA - 1025 A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especia ...
- UVA 1025 -- A Spy in the Metro (DP)
UVA 1025 -- A Spy in the Metro 题意: 一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, ...
- uva 1025 A Spy in the Metro 解题报告
A Spy in the Metro Time Limit: 3000MS 64bit IO Format: %lld & %llu Submit Status uDebug Secr ...
- UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)
传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...
- DAG的动态规划 (UVA 1025 A Spy in the Metro)
第一遍,刘汝佳提示+题解:回头再看!!! POINT: dp[time][sta]; 在time时刻在车站sta还需要最少等待多长时间: 终点的状态很确定必然是的 dp[T][N] = 0 ---即在 ...
- World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)
分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...
- UVa 1025 A Spy in the Metro (DP动态规划)
题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...
- UVA 1025 A Spy in the Metro 【DAG上DP/逆推/三维标记数组+二维状态数组】
Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After s ...
- uva 1025 A Spy int the Metro
https://vjudge.net/problem/UVA-1025 看见spy忍俊不禁的想起省赛时不知道spy啥意思 ( >_< f[i][j]表示i时刻处于j站所需的最少等待时间,有 ...
随机推荐
- PageRank算法简介及Map-Reduce实现
PageRank对网页排名的算法,曾是Google发家致富的法宝.以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理. 一.什么是pagerank Pag ...
- 我这样理解js里的this
关于this,是很多前端面试必考的题目,有时候在网上看到这些题目,自己试了一下,额,还真的错了!在实际开发中,也会遇到 this 的问题(虽然一些类库会帮我们处理),例如在使用一些框架的时候,例如:k ...
- 在win8(win8.1)电脑上安装IIS,配置web服务器,发布网站
1.IIS安装: 打开控制面板——程序和功能——启用或关闭Windows功能——找到(Windows功能下)下的(Internet Infornation Services)把Web 管理工具和万维网 ...
- JavaScript精要
写在开篇之前 这个系列都文章算是我最近研究了JavaScript(以后简称js)大半个月的一点心得吧.记得以前看过罗小平的一本书叫<Delphi精要>,我也就姑且起名叫<JavaSc ...
- jQuery.uploadify-----文件上传带进度条,支持多文件上传的插件
借鉴别人总结的uploadify:基于jquery的文件上传插件,支持ajax无刷新上传,多个文件同时上传,上传进行进度显示,控制文件上传大小,删除已上传文件. uploadify有两个版本,一个用f ...
- Bootstrap系列 -- 13. 内联表单
有时候我们需要将表单的控件都在一行内显示.在Bootstrap框架中实现这样的表单效果是轻而易举的,你只需要在<form>元素中添加类名“form-inline”即可 如果你要在input ...
- vim 快捷键
1.vim ~/.vimrc 进入配置文件 如果不知道vimrc文件在哪,可使用 :scriptnames 来查看 set nu #行号 set tabstop=4 #一个tab为4个空格长度 set ...
- 【转】关于Class.forName(“com.mysql.jdbc.Driver”)
原文:http://www.cnblogs.com/gaojing/archive/2012/03/23/2413638.html 传统的使用jdbc来访问数据库的流程为: Class.forName ...
- 1103简单SQL 行转列思路
转自http://www.cnblogs.com/lhj588/p/3315876.html -- 经典行列转化DROP TABLE IF EXISTS TabName;CREATE TABLE Ta ...
- ubuntu14.04完全卸载mysql
1.删除 mysql1 sudo apt-get autoremove --purge mysql-server-5.0 2 sudo apt-get remove mysql-server 3 su ...