自然语言19_Lemmatisation
QQ:231469242
欢迎喜欢nltk朋友交流
https://en.wikipedia.org/wiki/Lemmatisation
Lemmatisation (or lemmatization) in linguistics is the process of grouping together the inflected forms of a word so they can be analysed as a single item, identified by the word's lemma, or dictionary form.[1]
In computational linguistics, lemmatisation is the algorithmic process of determining the lemma of a word based on its intended meaning. Unlike stemming, lemmatisation depends on correctly identifying the intended part of speech and meaning of a word in a sentence, as well as within the larger context surrounding that sentence, such as neighboring sentences or even an entire document. As a result, developing efficient lemmatisation algorithms is an open area of research.[2][3]
Contents
Description
In many languages, words appear in several inflected forms. For example, in English, the verb 'to walk' may appear as 'walk', 'walked', 'walks', 'walking'. The base form, 'walk', that one might look up in a dictionary, is called the lemma for the word. The association of the base form with a part of speech is often called a lexeme of the word.
Lemmatisation is closely related to stemming. The difference is that a stemmer operates on a single word without knowledge of the context, and therefore cannot discriminate between words which have different meanings depending on part of speech. However, stemmers are typically easier to implement and run faster. The reduced "accuracy" may not matter for some applications. In fact, when used within information retrieval systems, stemming improves query recall accuracy, or true positive rate, when compared to lemmatisation. Nonetheless, stemming reduces precision, or true negative rate, for such systems.[4]
For instance:
- The word "better" has "good" as its lemma. This link is missed by stemming, as it requires a dictionary look-up.
- The word "walk" is the base form for word "walking", and hence this is matched in both stemming and lemmatisation.
- The word "meeting" can be either the base form of a noun or a form of a verb ("to meet") depending on the context; e.g., "in our last meeting" or "We are meeting again tomorrow". Unlike stemming, lemmatisation attempts to select the correct lemma depending on the context.
Document indexing software like Lucene[5] can store the base stemmed format of the word without the knowledge of meaning, but only considering word formation grammar rules. The stemmed word itself might not be a valid word: 'lazy', as seen in the example below, is stemmed by many stemmers to 'lazi'. This is because the purpose of stemming is not to produce the appropriate lemma – that is a more challenging task that requires knowledge of context. The main purpose of stemming is to map different forms of a word to a single form.[6] As a rules-based algorithm, dependent only upon the spelling of a word, it sacrifices accuracy to ensure that, for example, when 'laziness' is stemmed to 'lazi', it has the same stem as 'lazy'.
Use in biomedicine
Morphological analysis of published biomedical literature can yield useful results. Morphological processing of biomedical text can be more effective by a specialised lemmatisation program for biomedicine, and may improve the accuracy of practical information extraction tasks.[7]
自然语言19_Lemmatisation的更多相关文章
- 【HanLP】HanLP中文自然语言处理工具实例演练
HanLP中文自然语言处理工具实例演练 作者:白宁超 2016年11月25日13:45:13 摘要:HanLP是hankcs个人完成一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环 ...
- Python自然语言处理工具小结
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [ ...
- 【NLP】基于自然语言处理角度谈谈CRF(二)
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...
- Atitit 自然语言处理原理与实现 attilax总结
Atitit 自然语言处理原理与实现 attilax总结 1.1. 中文分词原理与实现 111 1.2. 英文分析 1941 1.3. 第6章 信息提取 2711 1.4. 第7章 自动摘要 3041 ...
- Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx
Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx 1. 摘要算法的大概流程2 2. 旧约圣经 (39卷)2 2.1. 与古兰经的对 ...
- tn文本分析语言(四) 实现自然语言计算器
tn是desert和tan共同开发的一种用于匹配,转写和抽取文本的语言.解释器使用Python实现,代码不超过1000行. github地址:https://github.com/ferventdes ...
- 自然语言26_perplexity信息
http://www.ithao123.cn/content-296918.html 首页 > 技术 > 编程 > Python > Python 文本挖掘:简单的自然语言统计 ...
- 43、哈工大NLP自然语言处理,LTP4j的测试+还是测试
1.首先需要构建自然语言处理的LTP的框架 (1)需要下载LTP的源码包即c++程序(https://github.com/HIT-SCIR/ltp)下载完解压缩之后的文件为ltp-master (2 ...
- Atitit attilax在自然语言处理领域的成果
Atitit attilax在自然语言处理领域的成果 1.1. 完整的自然语言架构方案(词汇,语法,文字的选型与搭配)1 1.2. 中文分词1 1.3. 全文检索1 1.4. 中文 阿拉伯文 英文的简 ...
随机推荐
- android 颜色对照
<table><tbody> <tr> <td bgcolor="#ffffff" width="30" height ...
- jquery渐渐的显示、隐藏效果
<!DOCTYPE html> <html> <head> <meta charset="gb2312" /> <title& ...
- mycat 9066管理端口 常用命令
1.连接mycat 9066管理端口 命令:mysql -uroot -proot -P9066 -h127.0.0.1 -u:用户名 -p:密码 -P:端口 -h:ip地址例:linux路径切换到m ...
- PyQt类库介绍
安装完PyQt后我们去看看这个库里面有些什么cd /usr/lib/python3/dist-packages/PyQt5/ && ls都是些.so的动态链接库,这就是为什么我们在安 ...
- eclipse-插件安装的三种方式
(前两种安装方式以多国语言包的安装为例) 1. 普通安装:用直接解压的安装方式来实现 解压插件到某个文件夹 将下载的插件文件解压到 Eclipse 的安装目录下 如插件文件为多国语言包: NLpac ...
- dede使用方法----调用列表页的分页功能
分页的标签:<div class="dede_pages"> <ul class="pagelist"> {dede:pagelist ...
- xml序列化方式
public static class MySerializeXmlHelper { static MySerializeXmlHelper() { } private static object _ ...
- css-使用line-height实现垂直居中的一些问题
网上都是这么说的,把line-height值设置为height一样大小的值可以实现单行文字的垂直居中.这句话确实是正确的,但其实也是有问题的.问题在于height,看我的表述:"把line- ...
- 【BZOJ-1974】auction代码拍卖会 DP + 排列组合
1974: [Sdoi2010]auction 代码拍卖会 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 305 Solved: 122[Submit ...
- BZOJ1407 [Noi2002]Savage
Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴 ...