自然语言19_Lemmatisation
QQ:231469242
欢迎喜欢nltk朋友交流
https://en.wikipedia.org/wiki/Lemmatisation
Lemmatisation (or lemmatization) in linguistics is the process of grouping together the inflected forms of a word so they can be analysed as a single item, identified by the word's lemma, or dictionary form.[1]
In computational linguistics, lemmatisation is the algorithmic process of determining the lemma of a word based on its intended meaning. Unlike stemming, lemmatisation depends on correctly identifying the intended part of speech and meaning of a word in a sentence, as well as within the larger context surrounding that sentence, such as neighboring sentences or even an entire document. As a result, developing efficient lemmatisation algorithms is an open area of research.[2][3]
Contents
Description
In many languages, words appear in several inflected forms. For example, in English, the verb 'to walk' may appear as 'walk', 'walked', 'walks', 'walking'. The base form, 'walk', that one might look up in a dictionary, is called the lemma for the word. The association of the base form with a part of speech is often called a lexeme of the word.
Lemmatisation is closely related to stemming. The difference is that a stemmer operates on a single word without knowledge of the context, and therefore cannot discriminate between words which have different meanings depending on part of speech. However, stemmers are typically easier to implement and run faster. The reduced "accuracy" may not matter for some applications. In fact, when used within information retrieval systems, stemming improves query recall accuracy, or true positive rate, when compared to lemmatisation. Nonetheless, stemming reduces precision, or true negative rate, for such systems.[4]
For instance:
- The word "better" has "good" as its lemma. This link is missed by stemming, as it requires a dictionary look-up.
- The word "walk" is the base form for word "walking", and hence this is matched in both stemming and lemmatisation.
- The word "meeting" can be either the base form of a noun or a form of a verb ("to meet") depending on the context; e.g., "in our last meeting" or "We are meeting again tomorrow". Unlike stemming, lemmatisation attempts to select the correct lemma depending on the context.
Document indexing software like Lucene[5] can store the base stemmed format of the word without the knowledge of meaning, but only considering word formation grammar rules. The stemmed word itself might not be a valid word: 'lazy', as seen in the example below, is stemmed by many stemmers to 'lazi'. This is because the purpose of stemming is not to produce the appropriate lemma – that is a more challenging task that requires knowledge of context. The main purpose of stemming is to map different forms of a word to a single form.[6] As a rules-based algorithm, dependent only upon the spelling of a word, it sacrifices accuracy to ensure that, for example, when 'laziness' is stemmed to 'lazi', it has the same stem as 'lazy'.
Use in biomedicine
Morphological analysis of published biomedical literature can yield useful results. Morphological processing of biomedical text can be more effective by a specialised lemmatisation program for biomedicine, and may improve the accuracy of practical information extraction tasks.[7]
自然语言19_Lemmatisation的更多相关文章
- 【HanLP】HanLP中文自然语言处理工具实例演练
HanLP中文自然语言处理工具实例演练 作者:白宁超 2016年11月25日13:45:13 摘要:HanLP是hankcs个人完成一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环 ...
- Python自然语言处理工具小结
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [ ...
- 【NLP】基于自然语言处理角度谈谈CRF(二)
基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...
- Atitit 自然语言处理原理与实现 attilax总结
Atitit 自然语言处理原理与实现 attilax总结 1.1. 中文分词原理与实现 111 1.2. 英文分析 1941 1.3. 第6章 信息提取 2711 1.4. 第7章 自动摘要 3041 ...
- Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx
Atitit.自然语言处理--摘要算法---圣经章节旧约39卷概览bible overview v2 qa1.docx 1. 摘要算法的大概流程2 2. 旧约圣经 (39卷)2 2.1. 与古兰经的对 ...
- tn文本分析语言(四) 实现自然语言计算器
tn是desert和tan共同开发的一种用于匹配,转写和抽取文本的语言.解释器使用Python实现,代码不超过1000行. github地址:https://github.com/ferventdes ...
- 自然语言26_perplexity信息
http://www.ithao123.cn/content-296918.html 首页 > 技术 > 编程 > Python > Python 文本挖掘:简单的自然语言统计 ...
- 43、哈工大NLP自然语言处理,LTP4j的测试+还是测试
1.首先需要构建自然语言处理的LTP的框架 (1)需要下载LTP的源码包即c++程序(https://github.com/HIT-SCIR/ltp)下载完解压缩之后的文件为ltp-master (2 ...
- Atitit attilax在自然语言处理领域的成果
Atitit attilax在自然语言处理领域的成果 1.1. 完整的自然语言架构方案(词汇,语法,文字的选型与搭配)1 1.2. 中文分词1 1.3. 全文检索1 1.4. 中文 阿拉伯文 英文的简 ...
随机推荐
- MyEclipse10连接数据库
连接oracle数据库 DB窗口>>右键:新建
- JNI系列——常见错误
1.本地方法没有找到 原因一:在Java代码中没有加载对应的类 原因二:在.c文件中将本地的方法名转换错误 2.本地库返回为空 原因一:加载的库名称错误 原因二:生成的库与部署设备平台错误
- canvas三角函数直线运动
var canvas = document.getElementById("canvas"); var cxt = canvas.getContext("2d" ...
- ubuntu下nginx的启停等常用命令
开发过程中,我们会经常的修改nginx的配置文件,每次修改配置文件都可以先测试下本次修改的配置文件是否正确,可以利用以下命令: ? 1 service nginx -t -c /alidata/ser ...
- secureCRT背景颜色设置
1. Options->Global Options->Advanced select 'Monochrome' click 'Edit' button normal: Backgrou ...
- 【BZOJ 1857】【SCOI 2010】传送带
三分套三分,虽然简单,但是也得掌握,,, 时间复杂度$O(log_{1.5}^2 n)$ 一开始WA好几次发现是快速读入里没有return,这样也能过样例?_(:3J∠)_ #include<c ...
- lucene-一篇分词器介绍很好理解的文章
本文来自这里在前面的概念介绍中我们已经知道了分析器的作用,就是把句子按照语义切分成一个个词语.英文切分已经有了很成熟的分析器: StandardAnalyzer,很多情况下StandardAnalyz ...
- iis Server Error in '/' Application
1.开始-运行-cmd-输入cd C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727-回车-aspnet_regiis.exe -i 回车 2.如果不是检查链接 ...
- servlet监听器Listener(理论+例子)
Listener采用了观察者模式(24种模式之一),Listener是servlet的监听器,他可以监听客户端的请求.服务器端的操作等, 通过监听器,可以自动激发一些操作.比如:监听在线用户数量 当增 ...
- 【BZOJ-3697&3127】采药人的路径&YinandYang 点分治 + 乱搞
3697: 采药人的路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 246[Submit][Status][Discus ...