Hadoop NameNode HA 和 ResourceManager HA
1、集群规划
1.1 规划说明
  hadoop1 cluster1 nameNode
  hadoop2 cluster1 nameNodeStandby ZooKeeper ResourceManager 
  hadoop3 cluster2 nameNode ZooKeeper
  hadoop4 cluster2 nameNodeStandby ZooKeeper ResourceManagerStandBy
  hadoop5 DataNode
  hadoop6 DataNode
  hadoop7 DataNode
1.2 集群 拓扑图
  
2、hadoop配置
2.1 core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://cluster1</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/hadoop/tmp</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop2:2181,hadoop3:2181,hadoop4:2181</value>
</property>
</configuration>
2.2 hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration> <property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!--指定DataNode存储block的副本数量。默认值是3个,我们现在有4个DataNode,该值不大于4即可。-->
<property>
<name>dfs.nameservices</name>
<value>cluster1,cluster2</value>
</property>
<!--使用federation时,使用了2个HDFS集群。这里抽象出两个NameService实际上就是给这2个HDFS集群起了个别名。名字可以随便起,相互不重复即可 --> <!-- 以下是集群cluster1的配置信息-->
<property>
<name>dfs.ha.namenodes.cluster1</name>
<value>nn1,nn2</value>
</property>
<!-- 指定NameService是cluster1时的namenode有哪些,这里的值也是逻辑名称,名字随便起,相互不重复即可 -->
<property>
<name>dfs.namenode.rpc-address.cluster1.nn1</name>
<value>hadoop1:9000</value>
</property>
<!-- 指定hadoop1的RPC地址 -->
<property>
<name>dfs.namenode.http-address.cluster1.nn1</name>
<value>hadoop1:50070</value>
</property>
<!-- 指定hadoop1的http地址 -->
<property>
<name>dfs.namenode.rpc-address.cluster1.nn2</name>
<value>hadoop2:9000</value>
</property>
<!-- 指定hadoop2的RPC地址 -->
<property>
<name>dfs.namenode.http-address.cluster1.nn2</name>
<value>hadoop2:50070</value>
</property>
<!-- 指定hadoop2的http地址 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop2:8485;hadoop3:8485;hadoop4:8485/cluster1</value>
</property>
<!-- 指定cluster1的两个NameNode共享edits文件目录时,使用的JournalNode集群信息,在cluster1中配置此信息 -->
<property>
<name>dfs.ha.automatic-failover.enabled.cluster1</name>
<value>true</value>
</property>
<!-- 指定cluster1是否启动自动故障恢复,即当NameNode出故障时,是否自动切换到另一台NameNode -->
<property>
<name>dfs.client.failover.proxy.provider.cluster1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 指定cluster1出故障时,哪个实现类负责执行故障切换 --> <!-- 以下是集群cluster2的配置信息-->
<property>
<name>dfs.ha.namenodes.cluster2</name>
<value>nn3,nn4</value>
</property>
<!-- 指定NameService是cluster2时的namenode有哪些,这里的值也是逻辑名称,名字随便起,相互不重复即可 -->
<property>
<name>dfs.namenode.rpc-address.cluster2.nn3</name>
<value>hadoop3:9000</value>
</property>
<!-- 指定hadoop3的RPC地址 -->
<property>
<name>dfs.namenode.http-address.cluster2.nn3</name>
<value>hadoop3:50070</value>
</property>
<!-- 指定hadoop3的http地址 -->
<property>
<name>dfs.namenode.rpc-address.cluster2.nn4</name>
<value>hadoop4:9000</value>
</property>
<!-- 指定hadoop4的RPC地址 -->
<property>
<name>dfs.namenode.http-address.cluster2.nn4</name>
<value>hadoop4:50070</value>
</property>
<!-- 指定hadoop4的http地址 -->
<!--
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop2:8485;hadoop3:8485;hadoop4:8485/cluster2</value>
</property>
-->
<!-- 指定cluster2的两个NameNode共享edits文件目录时,使用的JournalNode集群信息,在cluster2中配置此信息 -->
<property>
<name>dfs.ha.automatic-failover.enabled.cluster2</name>
<value>true</value>
</property>
<!-- 指定cluster2是否启动自动故障恢复,即当NameNode出故障时,是否自动切换到另一台NameNode -->
<property>
<name>dfs.client.failover.proxy.provider.cluster2</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 指定cluster2出故障时,哪个实现类负责执行故障切换 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/home/hadoop/hadoop/jndir</value>
</property>
<!-- 指定JournalNode集群在对NameNode的目录进行共享时,自己存储数据的磁盘路径 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/hadoop/hadoop/datadir</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/hadoop/hadoop/namedir</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 一旦需要NameNode切换,使用ssh方式进行操作 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!-- 一旦需要NameNode切换,使用ssh方式进行操作 -->
</configuration>
2.3 mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.4 yarn-site.xml
<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop5</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoop6</value>
</property>
<!--开启故障自动切换-->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!--在RM1上配置rm1,在MR2上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改-->
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
<description>If we want to launch more than one RM in single node, we need this configuration</description>
</property>
<!--
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
<description>If we want to launch more than one RM in single node, we need this configuration</description>
</property>
-->
<!--配置与zookeeper的连接地址-->
<property>
<name>yarn.resourcemanager.zk-state-store.address</name>
<value>hadoop2:2181,hadoop3:2181,hadoop4:2181</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop2:2181,hadoop3:2181,hadoop4:2181</value>
</property>
<!--开启自动恢复功能-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--schelduler失联等待连接时间-->
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<!--配置rm1-->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>hadoop2:8132</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>hadoop2:8130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>hadoop2:8188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>hadoop2:8131</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>hadoop2:8033</value>
</property>
<property>
<name>yarn.resourcemanager.ha.admin.address.rm1</name>
<value>hadoop2:23142</value>
</property> <!--配置rm2-->
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>hadoop4:8132</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>hadoop4:8130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>hadoop4:8188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>hadoop4:8131</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>hadoop4:8033</value>
</property>
<property>
<name>yarn.resourcemanager.ha.admin.address.rm2</name>
<value>hadoop4:23142</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/home/hadoop/hadoop/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/home/hadoop/hadoop/yarn/log/</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>23080</value>
</property>
<!--故障处理类-->
<property>
<name>yarn.client.failover-proxy-provider</name>
<value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
2.5 slaves文件
hadoop5
hadoop6
hadoop7
3 zookeeper 配置
3.1 zoo.cfg
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
#dataDir=/tmp/zookeeper
# the port at which the clients will connect
clientPort=2181
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
dataDir=/home/hadoop/zookeeper/data
dataLogDir=/home/hadoop/zookeeper/log
server.1=hadoop2:2888:3888
server.2=hadoop3:2888:3888
server.3=hadoop4:2888:3888
3.2 配置myid
在zookeeper data目录中分别执行
echo > myid
echo > myid
echo > myid
4 集群初始化及启动
4.1 在 hadoop2,hadoop3,hadoop4启动zookeeper
cd apps/zookeeper-3.4./
bin/zkServer.sh start
4.2 格式化zookeeper集群,在hadoop1、hadoop3 执行
hdfs zkfc -formatZK
4.3 启动JournalNode集群,在hadoop2,hadoop3,hadoop4 上执行
hadoop-daemon.sh start journalnode
4.4 格式化cluster1的namenode 在hadoop1上执行
hdfs namenode -format -clusterId c1
4.5 启动cluster1格式化后的namenode,在hadoop1上执行
hadoop-daemon.sh start namenode
4.6 把NameNode的数据从hadoop1同步到hadoop2中
hdfs namenode -bootstrapStandby
4.7 启动hadoop2即cluster1 nameNodeStandby
hadoop-daemon.sh start namenode
4.8 格式化cluster2的namenode 在hadoop3上执行
hdfs namenode -format -clusterId c2
4.9 启动cluster2格式化后的namenode,在hadoop3上执行
hadoop-daemon.sh start namenode
4.10 把NameNode的数据从hadoop3同步到hadoop4中在hadoop4上执行
hdfs namenode -bootstrapStandby
4.11 启动hadoop4即cluster2 namenode的standby
hadoop-daemon.sh start namenode
4.12 启动所有 datanode,在任何一个namenode上执行
hadoop-daemons.sh start datanode
4.13 启动yarn 在hadoop2上执行
start-yarn.sh
4.14 启动yarn 在hadoop4上执行
yarn-daemon.sh start resourcemanager
4.15 启动ZooKeeperFailoverController在每个namenode上执行
hadoop-daemon.sh start zkfc
Hadoop NameNode HA 和 ResourceManager HA的更多相关文章
- 安装部署Apache Hadoop (完全分布式模式并且实现NameNode HA和ResourceManager HA)
		
本节内容: 环境规划 配置集群各节点hosts文件 安装JDK1.7 安装依赖包ssh和rsync 各节点时间同步 安装Zookeeper集群 添加Hadoop运行用户 配置主节点登录自己和其他节点不 ...
 - Hadoop-2.3.0-cdh5.0.1完全分布式环境搭建(NameNode,ResourceManager HA)
		
编写不易,转载请注明(http://shihlei.iteye.com/blog/2084711)! 说明 本文搭建Hadoop CDH5.0.1 分布式系统,包括NameNode ,Resource ...
 - 【Hadoop学习】Apache Hadoop ResourceManager HA
		
简介 本向导简述了YARN资源管理器的HA,并详述了如何配置并使用该特性.RM负责追踪集群中的资源,并调度应用程序(如MapReduce作业).Hadoop2.4以前,RM是YARN集群中的单点故障. ...
 - Hadoop 2.6.0 Namenode HA,ResourceManager HA
		
先启动所有的zookeeper zkServer.sh start 在所有节点上启动JournalNode: sbin/hadoop-daemon.sh start journalnode 格式化第一 ...
 - hadoop NameNode HA 和ResouceManager HA
		
官网配置地址: HDFS HA : http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvai ...
 - hadoop namenode HA集群搭建
		
hadoop集群搭建(namenode是单点的) http://www.cnblogs.com/kisf/p/7456290.html HA集群需要zk, zk搭建:http://www.cnblo ...
 - Apache hadoop namenode ha和yarn ha ---HDFS高可用性
		
HDFS高可用性Hadoop HDFS 的两大问题:NameNode单点:虽然有StandbyNameNode,但是冷备方案,达不到高可用--阶段性的合并edits和fsimage,以缩短集群启动的时 ...
 - 通过tarball形式安装HBASE Cluster(CDH5.0.2)——Hadoop NameNode HA 切换引起的Hbase错误,以及Hbase如何基于NameNode的HA进行配置
		
通过tarball形式安装HBASE Cluster(CDH5.0.2)——Hadoop NameNode HA 切换引起的Hbase错误,以及Hbase如何基于NameNode的HA进行配置 配置H ...
 - Hadoop 2、配置HDFS HA (高可用)
		
前提条件 先搭建 http://www.cnblogs.com/raphael5200/p/5152004.html 的环境,然后在其基础上进行修改 一.安装Zookeeper 由于环境有限,所以在仅 ...
 
随机推荐
- 用Qt制作的Android独立游戏《吃药了》公布
			
一个多月的努力最终有了回报,我自己研究制作的独立游戏<吃药了>.最终在360应用商店上线了. 这一款游戏呢.使用的是Qt开发的.事实上开发这款简单的应用之前.我 ...
 - mysql优化---笔记
			
一.优化方法:(加粗部分为比较重要的) 1.数据表设计合理:2.索引优化:3.SQL语句优化,定位慢查询explain ;4.分表技术.分区技术:5.读写分离(配置):6.创建适当的存储过程.函数. ...
 - CentOS学习:第一天
			
阿里的一台ECS还有一个月到期,就趁这一个月的时间,用它来学习一下梦寐已久的CentOS. 由于历史原因,一直使用Windows环境,还从没接触过任何一种Linux系统. 在服务器端部署MySQL/T ...
 - mail发邮件报错 "send-mail: fatal: parameter inet_interfaces: no local interface found for ::1"
			
发送邮件: [root@itfswelog123]# echo '测试邮件标题' | mail -s "数据库挂啦.挂啦.起床啦 " xx@163.com 出现异常: [r ...
 - Tomcat中的Filter
			
Filter 节选部分源码.源码版本 Tomcat8.5 说明 filter 是 Servlet 规范 filter 是在 ,执行 Servlet.service方法之前执行 Filter相关接口 p ...
 - MAPREDUCE框架结构及核心运行机制
			
1.2.1 结构 一个完整的mapreduce程序在分布式运行时有三类实例进程: 1.MRAppMaster:负责整个程序的过程调度及状态协调 2.mapTask:负责map阶段的整个数据处理流程 3 ...
 - 大话Linux内核中锁机制之内存屏障、读写自旋锁及顺序锁
			
大话Linux内核中锁机制之内存屏障.读写自旋锁及顺序锁 在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论 ...
 - Linux基础-2.目录文件的浏览、管理及维护
			
1.Linux文件系统的层次结构 1)了解Linux文件系统的树状结构: 在Linux或UNIX操作系统中,所有的文件和目录都被组织成一个以根节点开始的倒置树状结构 2)掌握目录的定义:目录相当于Wi ...
 - MsSql  游标 修改字段两个表关联  表向另个表插入记录
			
-- 方法1:游标-- 声明变量DECLARE @SystemUserId AS UNIQUEIDENTIFIER -- 声明游标DECLARE C_SystemUser CURSOR FAST_FO ...
 - Redis集群入门
			
官方文章: https://redis.io/topics/cluster-tutorial#redis-cluster-configuration-parameters 本文永久地址: https: ...