Numpy是科学计算库,是一个强大的N维数组对象ndarray,是广播功能函数。其整合C/C++.fortran代码的工具 ,更是Scipy、Pandas等的基础

.ndim :维度 
.shape :各维度的尺度 (2,5) 
.size :元素的个数 10 
.dtype :元素的类型 dtype(‘int32’) 
.itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节 
ndarray数组的创建 
np.arange(n) ; 元素从0到n-1的ndarray类型 
np.ones(shape): 生成全1 
np.zeros((shape), ddtype = np.int32) : 生成int32型的全0 
np.full(shape, val): 生成全为val 
np.eye(n) : 生成单位矩阵

np.ones_like(a) : 按数组a的形状生成全1的数组 
np.zeros_like(a): 同理 
np.full_like (a, val) : 同理

np.linspace(1,10,4): 根据起止数据等间距地生成数组 
np.linspace(1,10,4, endpoint = False):endpoint 表示10是否作为生成的元素 
np.concatenate():

  • 数组的维度变换

.reshape(shape) : 不改变当前数组,依shape生成 
.resize(shape) : 改变当前数组,依shape生成 
.swapaxes(ax1, ax2) : 将两个维度调换 
.flatten() : 对数组进行降维,返回折叠后的一位数组

  • 数组的类型变换

数据类型的转换 :a.astype(new_type) : eg, a.astype (np.float) 
数组向列表的转换: a.tolist() 
数组的索引和切片

  • 一维数组切片

a = np.array ([9, 8, 7, 6, 5, ]) 
a[1:4:2] –> array([8, 6]) : a[起始编号:终止编号(不含): 步长]

  • 多维数组索引

a = np.arange(24).reshape((2, 3, 4)) 
a[1, 2, 3] 表示 3个维度上的编号, 各个维度的编号用逗号分隔

  • 多维数组切片

a [:,:,::2 ] 缺省时,表示从第0个元素开始,到最后一个元素 
数组的运算 
np.abs(a) np.fabs(a) : 取各元素的绝对值 
np.sqrt(a) : 计算各元素的平方根 
np.square(a): 计算各元素的平方 
np.log(a) np.log10(a) np.log2(a) : 计算各元素的自然对数、10、2为底的对数 
np.ceil(a) np.floor(a) : 计算各元素的ceiling 值, floor值(ceiling向上取整,floor向下取整) 
np.rint(a) : 各元素 四舍五入 
np.modf(a) : 将数组各元素的小数和整数部分以两个独立数组形式返回 
np.exp(a) : 计算各元素的指数值 
np.sign(a) : 计算各元素的符号值 1(+),0,-1(-) 

np.maximum(a, b) np.fmax() : 比较(或者计算)元素级的最大值 
np.minimum(a, b) np.fmin() : 取最小值 
np.mod(a, b) : 元素级的模运算 
np.copysign(a, b) : 将b中各元素的符号赋值给数组a的对应元素

  • 数据的CSV文件存取

CSV (Comma-Separated Value,逗号分隔值) 只能存储一维和二维数组

np.savetxt(frame, array, fmt=’% .18e’, delimiter = None): frame是文件、字符串等,可以是.gz .bz2的压缩文件; array 表示存入的数组; fmt 表示元素的格式 eg: %d % .2f % .18e ; delimiter: 分割字符串,默认是空格 
eg: np.savetxt(‘a.csv’, a, fmt=%d, delimiter = ‘,’ )

np.loadtxt(frame, dtype=np.float, delimiter = None, unpack = False) : frame是文件、字符串等,可以是.gz .bz2的压缩文件; dtype:数据类型,读取的数据以此类型存储; delimiter: 分割字符串,默认是空格; unpack: 如果为True, 读入属性将分别写入不同变量。 
多维数据的存取 
a.tofile(frame, sep=’’, format=’%s’ ) : frame: 文件、字符串; sep: 数据分割字符串,如果是空串,写入文件为二进制 ; format:: 写入数据的格式 
eg: a = np.arange(100).reshape(5, 10, 2) 
a.tofile(“b.dat”, sep=”,”, format=’%d’)

np.fromfile(frame, dtype = float, count=-1, sep=’’): frame: 文件、字符串 ; dtype: 读取的数据以此类型存储; count:读入元素个数, -1表示读入整个文件; sep: 数据分割字符串,如果是空串,写入文件为二进制

PS: a.tofile() 和np.fromfile()要配合使用,要知道数据的类型和维度。

np.save(frame, array) : frame: 文件名,以.npy为扩展名,压缩扩展名为.npz ; array为数组变量 
np.load(fname) : frame: 文件名,以.npy为扩展名,压缩扩展名为

np.save() 和np.load() 使用时,不用自己考虑数据类型和维度。

  • numpy随机数函数

numpy 的random子库

rand(d0, d1, …,dn) : 各元素是[0, 1)的浮点数,服从均匀分布 
randn(d0, d1, …,dn):标准正态分布 
randint(low, high,( shape)): 依shape创建随机整数或整数数组,范围是[ low, high) 
seed(s) : 随机数种子

shuffle(a) : 根据数组a的第一轴进行随机排列,改变数组a 
permutation(a) : 根据数组a的第一轴进行随机排列, 但是不改变原数组,将生成新数组 
choice(a[, size, replace, p]) : 从一维数组a中以概率p抽取元素, 形成size形状新数组,replace表示是否可以重用元素,默认为False。 
eg:  
replace = False时,选取过的元素将不会再选取

uniform(low, high, size) : 产生均匀分布的数组,起始值为low,high为结束值,size为形状 
normal(loc, scale, size) : 产生正态分布的数组, loc为均值,scale为标准差,size为形状 
poisson(lam, size) : 产生泊松分布的数组, lam随机事件发生概率,size为形状 
eg: a = np.random.uniform(0, 10, (3, 4)) a = np.random.normal(10, 5, (3, 4))

  • numpy的统计函数

sum(a, axis = None) : 依给定轴axis计算数组a相关元素之和,axis为整数或者元组 
mean(a, axis = None) : 同理,计算平均值 
average(a, axis =None, weights=None) : 依给定轴axis计算数组a相关元素的加权平均值 
std(a, axis = None) :同理,计算标准差 
var(a, axis = None): 计算方差 
eg: np.mean(a, axis =1) : 对数组a的第二维度的数据进行求平均 
a = np.arange(15).reshape(3, 5) 
np.average(a, axis =0, weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配

min(a) max(a) : 计算数组a的最小值和最大值 
argmin(a) argmax(a) : 计算数组a的最小、最大值的下标(注:是一维的下标) 
unravel_index(index, shape) : 根据shape将一维下标index转成多维下标 
ptp(a) : 计算数组a最大值和最小值的差 
median(a) : 计算数组a中元素的中位数(中值) 
eg:a = [[15, 14, 13], 
[12, 11, 10] ] 
np.argmax(a) –> 0 
np.unravel_index( np.argmax(a), a.shape) –> (0,0)

  • numpy的梯度函数

np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度 
离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2 
而c的梯度是: (c-b)/1

当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。 

  • 图像的表示和变换

PIL, python image library 库 
from PIL import Image 
Image是PIL库中代表一个图像的类(对象)

im = np.array(Image.open(“.jpg”))

im = Image.fromarray(b.astype(‘uint8’)) # 生成 
im.save(“路径.jpg”) # 保存

im = np.array(Image.open(“.jpg”).convert(‘L’)) # convert(‘L’)表示转为灰度图

numpy 模块常用方法的更多相关文章

  1. Python:基本运算、基本函数(包括复数)、Math模块、NumPy模块

    基本运算 x**2 : x^2 若x是mat矩阵,那就表示x内每个元素求平方 inf:表示正无穷 逻辑运算符:and,or,not 字典的get方法 a.get(k,d) 1 1 get相当于一条if ...

  2. python-nmap模块常用方法说明

    一.模块常用方法说明 本节介绍python-nmap模块的两个常用类,一个为PortScanner()类,实现一个nmap工具的端口扫描功能封装:另一个为PortScannerHostDict()类, ...

  3. 【Python 数据分析】Numpy模块

    Numpy模块可以高效的处理数据,提供数组支持.很多模块都依赖他,比如:pandas.scipy.matplotlib 安装Numpy 首先到网站:https://www.lfd.uci.edu/~g ...

  4. python numpy模块

    目录 numpy模块 一维数组 二维数组(用的最多的) 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的元素的替换 通过函数方法创建多维数组 矩阵的运算 点乘和转置(了解) 点乘必须 m*n ...

  5. Python及bs4、lxml、numpy模块包的安装

    http://blog.csdn.net/tiantiancsdn/article/details/51046490(转载) Python及bs4.lxml.numpy模块包的安装 Python 的安 ...

  6. numpy模块(对矩阵的处理,ndarray对象)

    6.12自我总结 一.numpy模块 import numpy as np约定俗称要把他变成np 1.模块官方文档地址 https://docs.scipy.org/doc/numpy/referen ...

  7. Python3:numpy模块中的argsort()函数

    Python3:numpy模块中的argsort()函数   argsort函数是Numpy模块中的函数: >>> import numpy >>> help(nu ...

  8. 3 numpy模块

    Numpy     什么是Numpy:Numeric Python         Numpy模块是Python的一种开源的数值计算扩展.             1 一个强大的N维数组对象Array ...

  9. Day 19 numpy 模块

    numpy 模块(多维数组) import numpy as np arr=np.array([1,2,3,4],[5,6,7,8]) print(arr) #[[1 2 3 4] #[5 6 7 8 ...

随机推荐

  1. Python_03-数据类型

    1.1   数据类型 基本数据类型:字符串,整数,浮点数,布尔型 集合类型:列表(list), 元组(tuple), 字典(dictionary或hash) 列表(list)的定义: aList = ...

  2. js 滚动条滚动到底部触发事件

    一.前言 在开发项目时,常常需要展示大量数据.如果全部显示出来,数据相对少时,看不出来什么不同,如果数据很多时,一次请求全部显示,这就相当可怕了. 面对这种问题,PC里使用了分页效果,将数据分成一页页 ...

  3. 使用透明flash+背景图片制作绚丽页面

    关键代码: <div style="width: 469px; height: 303px; background-image: url('https://images0.cnblog ...

  4. Spring boot 、mybatis 和 swagger 整合

    文件路径 添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...

  5. win10系统的快捷键

    1.win10特有的快捷键:任务视图和虚拟桌面相关 (1)Win + Tab:查看任务视图 (2)Win + Ctrl + D:在任务视图中新建虚拟桌面 (3)Win + Ctrl + F4:关闭当前 ...

  6. 使用mybatis提供的各种标签方法实现动态拼接Sql。使用sql片段提取重复的标签内容

    Sql中可将重复的sql提取出来,使用时用include引用即可,最终达到sql重用的目的,如下: <select id="findUserByNameAndSex" par ...

  7. Kubernetes基本原理与示例

    1. Kubernetes介绍 基本概念 Pod Pod是Kubernetes的基本操作单元,把相关的一个或多个容器构成一个Pod,通常Pod里的容器运行相同的应用.Pod包含的容器运行在同一个Nod ...

  8. platform总线驱动代码分析

    /************************************************************************/ Linux内核版本:2.6.35.7 运行平台:三 ...

  9. git ssh创建秘钥

    git是分布式的代码管理工具,远程的代码管理是基于ssh的,所以要使用远程的git则需要ssh的配置. github的ssh配置如下: 一 . 设置git的user name和email: $ git ...

  10. 《官方资料》 例如:string 函数 、分组函数

    site:www.mysql.com SUBSTRING_INDEX ----------------------------------------------------------------- ...