原理说明:以增量方式从开始到结束!

实现方法:CMD命令

特点:纯数字

语法:

FOR /L %variable IN (start,step,end) DO command [command-parameters]

原理:以增量方式从开始到结束

实际应用:

一般验证码(4位):

FOR /L %i IN (1000,1,9999) DO echo %i>>字典.txt

6位验证码(6位):

FOR /L %i IN (100000,1,999999) DO echo %i>>字典.txt

值得注意的地方:开始量不能以000···0这种形式开始!

Generating an arbitrary digit password dictionary的更多相关文章

  1. CMSEASY /lib/tool/front_class.php、/lib/default/user_act.php arbitrary user password reset vulnerability

    catalog . 漏洞描述 . 漏洞触发条件 . 漏洞影响范围 . 漏洞代码分析 . 防御方法 . 攻防思考 1. 漏洞描述 攻击者通过构造特殊的HTTP包,可以直接重置任意用户(包括管理员)的密码 ...

  2. 7 Best Free RAR Password Unlocker Software For Windows

    Here is the list of Best Free RAR Password Unlocker Software for Windows. These software run differe ...

  3. BlackArch-Tools

    BlackArch-Tools 简介 安装在ArchLinux之上添加存储库从blackarch存储库安装工具替代安装方法BlackArch Linux Complete Tools List 简介 ...

  4. Top 10 Free Wireless Network hacking/monitoring tools for ethical hackers and businesses

    There are lots of free tools available online to get easy access to the WiFi networks intended to he ...

  5. 优秀的PHP开源项目集合

    包管理Package Management Package Management Related 框架 框架组件 微框架Micro Frameworks 内容管理系统Content Managemen ...

  6. 【转】C# HttpWebRequest\HttpWebResponse\WebClient发送请求解析json数据

    http://blog.csdn.net/kingcruel/article/details/44036871 版权声明:本文为博主原创文章,未经博主允许不得转载. ================= ...

  7. windows 下使用 zip安装包安装MySQL 5.7

    以下内容参考官方文档:http://dev.mysql.com/doc/refman/5.7/en/windows-start-command-line.html 解压缩zip到D:\mysql-5. ...

  8. python27读书笔记0.3

    #-*- coding:utf-8 -*- ##D.has_key(k): A predicate that returns True if D has a key k.##D.items(): Re ...

  9. PHP框架、库和软件资源大全(整理篇)

    php的资料 https://github.com/ziadoz/awesome-php Awesome PHP A curated list of amazingly awesome PHP lib ...

随机推荐

  1. JS调用webservice的两种方式

    协议肯定是使用http协议,因为soap协议本身也是基于http协议.期中第二种方式:只有webservice3.5以后版本才可以成功 第一种方式:构造soap格式的body,注意加粗的黄色标识,比如 ...

  2. Spring Cloud Bus实现自动更新配置

    一.概述 1. 配置环境 版本:Spring Boot版本2.0.3.RELEASE,Spring Cloud版本Finchley.SR1,RabbitMQ 3.7.7 说明:本文章是在https:/ ...

  3. NGUI中显示DrawCall详细信息

    [NGUI显示DrawCall详细信息] UIDrawCall中有个宏,SHOW_HIDDEN_OBJECTS,默认为关闭状态.将此宏打开,NGUI即会将DrawCall对象显示在Hierarchy中 ...

  4. java基础三 [深入多态,接口和多态](阅读Head First Java记录)

    抽象类和抽象方法 1.抽象类的声明方法,在前面加上抽象类的关键词abstract abstract class canine extends animal{      public void roam ...

  5. Linux基石【第四篇】基本Linux命令

    Linux 系统上一切皆文件 命令: pwd  -- 查看当前目录  / 代表根目录 clear -- 清屏命令 cd(change directory) -- 切换目录 cd / -- 切换到根目录 ...

  6. Java核心技术-泛型程序设计

    使用泛型机制编写的代码要比那些杂乱地使用Object变量,然后再进行强制类型转换的代码具有更好的安全性和可读性. 泛型对于集合类尤其有用 1 为什么要使用泛型程序设计 泛型程序设计意味着编写的代码可以 ...

  7. 斜杠反斜杠,去空格\xa0,连接函数join()

    1斜杠反斜杠 斜杠:/.反斜杠:\. 反斜杠\,在windows系统中用来表示目录. 而在unix系统中,/表示目录.由于web遵循unix命名,所以在网址(URL)中,/表示目录. 在unix系统中 ...

  8. Core Graphics Layer Drawing

    [Core Graphics Layer Drawing] CGLayer objects (CGLayerRef data type) allow your application to use l ...

  9. spark yarn 集群提交kafka代码

    配置好hadoop的环境,具体根据http://blog.csdn.net/u010638969/article/details/51283216博客所写的进行配置. 运行start-dfs.sh启动 ...

  10. CodeForces 687B Remainders Game(数学,最小公倍数)

    题意:给定 n 个数,一个数 k,然后你知道一个数 x 取模这个 n 个的是几,最后问你取模 k,是几. 析:首先题意就看了好久,其实并不难,我们只要能从 n 个数的最小公倍数是 k的倍数即可,想想为 ...