【BZOJ5099】[POI2018]Pionek

Description

在无限大的二维平面的原点(0,0)放置着一个棋子。你有n条可用的移动指令,每条指令可以用一个二维整数向量表示。每条指令最多只能执行一次,但你可以随意更改它们的执行顺序。棋子可以重复经过同一个点,两条指令的方向向量也可能相同。你的目标是让棋子最终离原点的欧几里得距离最远,请问这个最远距离是多少?

Input

第一行包含一个正整数n(n<=200000),表示指令条数。
接下来n行,每行两个整数x,y(|x|,|y|<=10000),表示你可以从(a,b)移动到(a+x,b+y)。

Output

输出一行一个整数,即最大距离的平方。

Sample Input

5
2 -2
-2 -2
0 2
3 1
-3 1

Sample Output

26

HINT

题解:假如我们已经确定了最终向量的方向,那么我们就会选择所有在这个方向上投影为正的向量。于是我们将所有向量按极角排序,然后枚举所有方向,用前缀和维护向量的和。可以先将序列倍长,然后用双指针法扫一遍即可。

不过需要注意的是,我们枚举的方向不仅是所有向量的方向,还有所有向量之间间隔的方向,所以我们在每个指针移动的时候都更新一下答案即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int maxn=200010;
int n;
ll ans;
struct node
{
int x,y;
double a;
}p[maxn<<1];
ll sx[maxn<<1],sy[maxn<<1];
bool cmp(const node &a,const node &b)
{
return a.a<b.a;
}
inline void check(int l,int r)
{
if(l<=r) ans=max(ans,(sx[r]-sx[l-1])*(sx[r]-sx[l-1])+(sy[r]-sy[l-1])*(sy[r]-sy[l-1]));
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,j;
for(i=1;i<=n;i++) p[i].x=rd(),p[i].y=rd(),p[i].a=atan2(p[i].x,p[i].y),p[i+n]=p[i],p[i+n].a+=2*pi;
sort(p+1,p+2*n+1,cmp);
for(i=1;i<=2*n;i++) sx[i]=sx[i-1]+p[i].x,sy[i]=sy[i-1]+p[i].y;
for(i=j=1;i<=2*n;i++)
{
for(;j<i&&p[j].a<=p[i].a-pi;j++,check(j,i-1));
check(j,i);
}
for(;j<=2*n;check(j,2*n),j++);
printf("%lld",ans);
return 0;
}//2 1 10 1 -10

【BZOJ5099】[POI2018]Pionek 几何+双指针的更多相关文章

  1. bzoj5099 [POI2018]Pionek 双指针

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5099 题解 这道题做法似乎挺单一的. (一开始想了个假做法 向量和的长度等于所有向量在其方向上 ...

  2. bzoj5099: [POI2018]Pionek

    Description 在无限大的二维平面的原点(0,0)放置着一个棋子.你有n条可用的移动指令,每条指令可以用一个二维整数向量表 示.每条指令最多只能执行一次,但你可以随意更改它们的执行顺序.棋子可 ...

  3. [POI2018]Pionek

    [POI2018]Pionek 题目大意: 在无限大的二维平面的原点放置着一个棋子.你有\(n(n\le2\times10^5)\)条可用的移动指令,每条指令可以用一个二维整数向量表示.请你选取若干条 ...

  4. bzoj 5099 [POI2018]Pionek 计算几何 极角排序

    [POI2018]Pionek Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 269  Solved: 80[Submit][Status][Disc ...

  5. 【bzoj5099】[POI2018]Pionek 双指针法

    题目描述 给你 $n$ 个平面向量,选出它们中的一部分,使得它们的和的长度最大.求这个最大长度的平方. 输入 第一行包含一个正整数n(n<=200000),表示指令条数. 接下来n行,每行两个整 ...

  6. bzoj 5099: [POI2018]Pionek

    题解: 还是比较简单的一道题 考虑现在有一个向量,当且仅当下一个向量与它夹角<90度这个向量的模长才会增加 接下来怎么做呢 如果我们去枚举初始向量,向量方向会随着新增向量而变化 随着不断顺时针的 ...

  7. BZOJ 5099: Pionek(双指针)(占位)

    pro:有N个向量,你可以选择一些向量,使得其向量和离原点最远. 输出这个欧几里得距离的平方. sol:(感觉网上的证明都不是很充分,我自己也是半信半疑吧)日后证明了再补. #include<b ...

  8. POI2018

    [BZOJ5099][POI2018]Pionek(极角排序+two pointers) 几个不会严谨证明的结论: 1.将所有向量按极角排序,则答案集合一定是连续的一段. 当答案方向确定时,则一个向量 ...

  9. [BZOJ5099]Pionek

    Description 给 \(n\) (\(n\le 2\times 10 ^5\)) 个向量,现在你在 \((0,0)\) ,选择一些向量使你走的最远. Solution 自己的想法:按极角排序后 ...

随机推荐

  1. python三大神器之virtualenv pip, virtualenv, fabric通称为pythoner的三大神器。

    python三大神器之virtualenv   pip, virtualenv, fabric通称为pythoner的三大神器. virtualenv virtualenv------用来建立一个虚拟 ...

  2. namp命令详解

    我将用两个不同的部分来涵盖大部分NMAP的使用方法,这是nmap关键的第一部分.在下面的设置中,我使用两台已关闭防火墙的服务器来测试Nmap命令的工作情况. 192.168.0.100 – serve ...

  3. Entity Framework表拆分

    一.概念 表拆分:一个表拆分成多个实体,例如Photograph表,可以拆分为Photograph和PhotographFullImage两张表. Photograph实体结构: using Syst ...

  4. json_decode() expects parameter 1 to be string, object given

    $data = Weann\Socialite\Facades\Socialite::driver('wechat')->user();//是字符串 $data=json_encode($dat ...

  5. HTML坦克大战学习02---坦克动起来

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <t ...

  6. Qt::WA_DeleteOnClose 造成的野指针问题

    今天遇到了一个由Qt::WA_DeleteOnClose造成的野指针问题,在网上搜到的一个求助贴如下(http://bbs.csdn.net/topics/380182058): 主窗口类QMainW ...

  7. 一直误解的memset函数

    1.“想当然”导致的后果 今天犯了一个十分低级的错误,在对一个整型数组用memset进行初始化设置所有元素值为1.可是结果却大出所料,很意外啊!接着,我就做了代码测试. #include <io ...

  8. tarcert

     前言:今天在阅读“Web性能权威指南”这本书的时候,发现 tracert 这个命令挺有意思的,在分析网络性能瓶颈的时候也能使用的到,在此就小记一笔以备后用. 1:作用 tracert 是一个简单的网 ...

  9. c++ mktime()

    今天联系写一个日历的程序,需要算出月份中的第一天是星期几,用到了mktime()这个函数,感觉这个函数挺有用的,分享给大家. 原型:time_t mktime(struct tm *) 其中的tm结构 ...

  10. 深入理解bootstrap框架之第二章整体架构

    标注下,正好最近关注前段框架 1. CSS-12栅格系统 把网页宽度均分为12等分(保留15位精度)——这是bootstrap的核心功能. 2.基础布局组件 包括排版.按钮.表格.布局.表单等等. 3 ...