UVA 10328 - Coin Toss dp+大数
题目链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1269
10328 - Coin Toss
Time limit: 3.000 seconds
#### 问题描述
> Toss is an important part of any event. When everything becomes equal toss is the ultimate decider.
> Normally a fair coin is used for Toss. A coin has two sides head(H) and tail(T). Superstition may work
> in case of choosing head or tail. If anyone becomes winner choosing head he always wants to choose
> head. Nobody believes that his winning chance is 50-50. However in this problem we will deal with a
> fair coin and n times tossing of such a coin. The result of such a tossing can be represented by a string.
> Such as if 3 times tossing is used then there are possible 8 outcomes.
> HHH HHT HTH HTT THH THT TTH TTT
> As the coin is fair we can consider that the probability of each outcome is also equal. For simplicity
> we can consider that if the same thing is repeated 8 times we can expect to get each possible sequence
> once.
> In the above example we see 1 sequence has 3 consecutive H, 3 sequence has 2 consecutive H and 7
> sequence has at least single H. You have to generalize it. Suppose a coin is tossed n times. And the
> same process is repeated 2n times. How many sequence you will get which contains a sequence of H of
> length at least k.
输入
The input will start with two positive integer, n and k (1 ≤ k ≤ n ≤ 100). Input is terminated by
EOF.
输出
For each test case show the result in a line as specified in the problem statement.
样例输入
4 1
4 2
4 3
4 4
6 2
样例输出
15
8
3
1
43
题意
给你n个硬币,考虑正反的所有排列数:比如n=2:{HH,HT,TH,TT),然后问至少有k个的硬币连续正面朝上的总数。
题解
至少k个=2^n-最多k-1个。
所以我们可以转换成去求最多k个的问题
dp[k][i][0]表示前i个最多k个连续正面朝上,且第i个反面朝上的总数,
dp[k][i][1]表示前i个最多k个连续正面朝上,且第i个反面朝上的总数,
则我们只需要考虑扣掉最后连续k+1个正面朝上这种情况就可以转移了,写完之后上大整数。
代码
c++(没考虑数据溢出):
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=111;
LL dp[maxn][maxn][2];
int n,m;
void pre(){
clr(dp,0);
for(int k=0;k<maxn;k++){
dp[k][0][0]=1;
for(int i=1;i<maxn;i++){
dp[k][i][1]=dp[k][i][0]=dp[k][i-1][0]+dp[k][i-1][1];
if(i>k) dp[k][i][1]-=dp[k][i-k-1][0];
}
}
}
int main() {
pre();
while(scf("%d%d",&n,&m)==2){
LL x=1;
rep(i,0,n) x*=2;
prf("%lld\n",x-dp[m-1][n][0]-dp[m-1][n][1]);
}
return 0;
}
//end-----------------------------------------------------------------------
java:
import java.util.*;
import java.math.*;
public class Main {
final static int maxn = 111;
public static void main(String args[]) {
Scanner cin = new Scanner(System.in);
BigInteger[][][] dp = new BigInteger[maxn][maxn][2];
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
dp[i][j][1]=dp[i][j][0] = BigInteger.ZERO;
}
}
for (int k = 0; k < maxn; k++) {
dp[k][0][0] = BigInteger.ONE;
for (int i = 1; i < maxn; i++) {
dp[k][i][1]=dp[k][i][0] = dp[k][i - 1][0].add(dp[k][i - 1][1]);
if (i > k)
dp[k][i][1] = dp[k][i][1].subtract(dp[k][i - k - 1][0]);
}
}
BigInteger[] x = new BigInteger[maxn];
x[0] = BigInteger.ONE;
for (int i = 1; i < maxn; i++)
x[i] = x[i - 1].add(x[i - 1]);
while (cin.hasNext()) {
int n, m;
n = cin.nextInt();
m = cin.nextInt();
BigInteger ans = x[n].subtract(dp[m - 1][n][0]).subtract(dp[m - 1][n][1]);
System.out.println(ans.toString());
}
}
}
UVA 10328 - Coin Toss dp+大数的更多相关文章
- UVA 10328 Coin Toss
Coin Toss Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: ...
- uva 10328 - Coin Toss 投硬币(dp递推,大数)
题意:抛出n次硬币(有顺序),求至少k个以上的连续正面的情况的种数. 思路:转换成求抛n个硬币,至多k-1个连续的情况种数,用所有可能出现的情况种数减去至多k-1个的情况,就得到答案了.此题涉及大数加 ...
- UVa 10328 Coin Toss(Java大数+递推)
https://vjudge.net/problem/UVA-10328 题意: 有H和T两个字符,现在要排成n位的字符串,求至少有k个字符连续的方案数. 思路:这道题目和ZOJ3747是差不多的,具 ...
- UVa 10328 - Coin Toss (递推)
题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手.我们可以试着将问题转化一下. 设dp[i][j]表示抛掷i个硬币出现连续至多j个H ...
- UVA.674 Coin Change (DP 完全背包)
UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...
- UVA 674 Coin Change(dp)
UVA 674 Coin Change 解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...
- UVA 674 Coin Change 换硬币 经典dp入门题
题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...
- UVA 562 Dividing coins(dp + 01背包)
Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...
- uva 674 Coin Change 换钱币【完全背包】
题目链接:https://vjudge.net/contest/59424#problem/A 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值 ...
随机推荐
- Python基础学习笔记(一)安装以及IDE的配置
一.初识Python Python官方网站:www.python.org 版本:python-3.4.3.amd64 初次接触Python,没有使用Python 2.x进行开发真实项目的经历.所以不知 ...
- Flume(3)-安装部署
一. 下载 Flume官网地址 http://flume.apache.org/ 文档查看地址 http://flume.apache.org/FlumeUserGuide.html 下载地址 htt ...
- linux-2.6.22.6内核启动分析之配置
配置过程最终结果是生成.config文件,我们想要对配置的目的有很清楚的了解,必须先对.config文件进行分析.通过cd命令切换到linux-2.6.22.6内核目录,输入vi .config 可以 ...
- 【原创】frozenset集合函数入门及实例
函数作用 frozenset() 返回一个冻结的集合,冻结后集合不能再添加或删除任何元素.与之对应的是set函数,set无序排序且不重复,是可变的,有add(),remove()等方法. 函数原型 f ...
- 11-while循环基本使用
hm_02_第一个while循环.py def main(): i = 1 while i <= 3: print(i, 'Hello world') i += 1 print(i) 1 Hel ...
- PTA基础编程题目集6-3简单求和 (函数题)
6-3 简单求和 (10 分) 本题要求实现一个函数,求给定的N个整数的和. 函数接口定义: int Sum(int List[],int N) 其中给定整数存放在数组List[]中,正整数N是数组元 ...
- LeetCode——数组篇:659. 分割数组为连续子序列
659. 分割数组为连续子序列 输入一个按升序排序的整数数组(可能包含重复数字),你需要将它们分割成几个子序列,其中每个子序列至少包含三个连续整数.返回你是否能做出这样的分割? 示例 1: 输入: [ ...
- (数据科学学习手札49)Scala中的模式匹配
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...
- SQL学习笔记:函数
SQL函数 AVG select AVG(col) AS avgvalue from tablename select col2 from tablename where col1>(selec ...
- C#的Dispose模式复习
http://www.cnblogs.com/DebugLZQ/archive/2012/08/28/2659189.html http://www.cnblogs.com/tsoukw/archiv ...