UVA 10328 - Coin Toss dp+大数
题目链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1269
10328 - Coin Toss
Time limit: 3.000 seconds
#### 问题描述
> Toss is an important part of any event. When everything becomes equal toss is the ultimate decider.
> Normally a fair coin is used for Toss. A coin has two sides head(H) and tail(T). Superstition may work
> in case of choosing head or tail. If anyone becomes winner choosing head he always wants to choose
> head. Nobody believes that his winning chance is 50-50. However in this problem we will deal with a
> fair coin and n times tossing of such a coin. The result of such a tossing can be represented by a string.
> Such as if 3 times tossing is used then there are possible 8 outcomes.
> HHH HHT HTH HTT THH THT TTH TTT
> As the coin is fair we can consider that the probability of each outcome is also equal. For simplicity
> we can consider that if the same thing is repeated 8 times we can expect to get each possible sequence
> once.
> In the above example we see 1 sequence has 3 consecutive H, 3 sequence has 2 consecutive H and 7
> sequence has at least single H. You have to generalize it. Suppose a coin is tossed n times. And the
> same process is repeated 2n times. How many sequence you will get which contains a sequence of H of
> length at least k.
输入
The input will start with two positive integer, n and k (1 ≤ k ≤ n ≤ 100). Input is terminated by
EOF.
输出
For each test case show the result in a line as specified in the problem statement.
样例输入
4 1
4 2
4 3
4 4
6 2
样例输出
15
8
3
1
43
题意
给你n个硬币,考虑正反的所有排列数:比如n=2:{HH,HT,TH,TT),然后问至少有k个的硬币连续正面朝上的总数。
题解
至少k个=2^n-最多k-1个。
所以我们可以转换成去求最多k个的问题
dp[k][i][0]表示前i个最多k个连续正面朝上,且第i个反面朝上的总数,
dp[k][i][1]表示前i个最多k个连续正面朝上,且第i个反面朝上的总数,
则我们只需要考虑扣掉最后连续k+1个正面朝上这种情况就可以转移了,写完之后上大整数。
代码
c++(没考虑数据溢出):
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=111;
LL dp[maxn][maxn][2];
int n,m;
void pre(){
clr(dp,0);
for(int k=0;k<maxn;k++){
dp[k][0][0]=1;
for(int i=1;i<maxn;i++){
dp[k][i][1]=dp[k][i][0]=dp[k][i-1][0]+dp[k][i-1][1];
if(i>k) dp[k][i][1]-=dp[k][i-k-1][0];
}
}
}
int main() {
pre();
while(scf("%d%d",&n,&m)==2){
LL x=1;
rep(i,0,n) x*=2;
prf("%lld\n",x-dp[m-1][n][0]-dp[m-1][n][1]);
}
return 0;
}
//end-----------------------------------------------------------------------
java:
import java.util.*;
import java.math.*;
public class Main {
final static int maxn = 111;
public static void main(String args[]) {
Scanner cin = new Scanner(System.in);
BigInteger[][][] dp = new BigInteger[maxn][maxn][2];
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
dp[i][j][1]=dp[i][j][0] = BigInteger.ZERO;
}
}
for (int k = 0; k < maxn; k++) {
dp[k][0][0] = BigInteger.ONE;
for (int i = 1; i < maxn; i++) {
dp[k][i][1]=dp[k][i][0] = dp[k][i - 1][0].add(dp[k][i - 1][1]);
if (i > k)
dp[k][i][1] = dp[k][i][1].subtract(dp[k][i - k - 1][0]);
}
}
BigInteger[] x = new BigInteger[maxn];
x[0] = BigInteger.ONE;
for (int i = 1; i < maxn; i++)
x[i] = x[i - 1].add(x[i - 1]);
while (cin.hasNext()) {
int n, m;
n = cin.nextInt();
m = cin.nextInt();
BigInteger ans = x[n].subtract(dp[m - 1][n][0]).subtract(dp[m - 1][n][1]);
System.out.println(ans.toString());
}
}
}
UVA 10328 - Coin Toss dp+大数的更多相关文章
- UVA 10328 Coin Toss
Coin Toss Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: ...
- uva 10328 - Coin Toss 投硬币(dp递推,大数)
题意:抛出n次硬币(有顺序),求至少k个以上的连续正面的情况的种数. 思路:转换成求抛n个硬币,至多k-1个连续的情况种数,用所有可能出现的情况种数减去至多k-1个的情况,就得到答案了.此题涉及大数加 ...
- UVa 10328 Coin Toss(Java大数+递推)
https://vjudge.net/problem/UVA-10328 题意: 有H和T两个字符,现在要排成n位的字符串,求至少有k个字符连续的方案数. 思路:这道题目和ZOJ3747是差不多的,具 ...
- UVa 10328 - Coin Toss (递推)
题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手.我们可以试着将问题转化一下. 设dp[i][j]表示抛掷i个硬币出现连续至多j个H ...
- UVA.674 Coin Change (DP 完全背包)
UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...
- UVA 674 Coin Change(dp)
UVA 674 Coin Change 解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...
- UVA 674 Coin Change 换硬币 经典dp入门题
题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...
- UVA 562 Dividing coins(dp + 01背包)
Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...
- uva 674 Coin Change 换钱币【完全背包】
题目链接:https://vjudge.net/contest/59424#problem/A 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值 ...
随机推荐
- 关于Xshell无法连接本地虚拟机的问题
近期想搭建一个测试用的集群,但是! 刚开始搭第一台虚拟机就出现问题了,Xshell无法连接到虚拟机! 然后我更改了/etc/sysconfig/network-scripts/ifcfg-ens33 ...
- 【npm 指令】 (不定时持续更新)
查看webpack所有的版本及更多信息 npm info webpack 查看webpack所有的版本 npm info webpack versions 查看webpack最新的版本 npm vie ...
- 清华大学《C++语言程序设计基础》线上课程笔记03---数据的共享和保护&数组
数据的共享和保护 对象的生存期 static类型的局部变量,生存期在整个程序,局部可见. void example() { static a=1; int b=2 } 当调用完example函数后,b ...
- c语言单向链表逆转实现方法
自己理解的思路如下所示: 从第二个节点开始,先记录下一个节点,把第二个节点移到头节点之前,头节点变为移动的这个节点之前记录的节点变为接下来要移动的节点用for循环重复最后把原来头节点变成尾节点(*ne ...
- 解读python手册的例子a, b = b, a+b
Python手册上有个例子,用于输出10以内的斐波那契序列.代码如下: a, b = 0, 1 while b < 10: print(b) a, b = b, a+b 用到了一些Python的 ...
- Yii 2.0 中事件的使用
关于PHP的事件处理,参照 http://www.cnblogs.com/mafeifan/p/4322238.html http://www.cnblogs.com/mafeifan/p/43222 ...
- [Bootstrap 源码解析]——bootstrap源码之初始化
bootstrap源码之初始化 我们先来分析normalize.less编译后的源码,我们知道normalize.css是一个专门将不同浏览器的默认css特性设置为统一效果的css库,它和reset. ...
- centos7 安装rabbitmq3.4.1-1
安装环境:centos7版本 一.rabbitmq3.4.1-1安装环境配置: 安装erlang 1.创建Yum源 #创建yum源 sudo vi /etc/yum.repos.d/rabbitmq- ...
- jmeter逻辑控制器
刚开始学习,只写几种了解的逻辑控制器 1.简单控制器 只用来组合采样器和其他逻辑控制器,不影响jmeter的运行 2.循环控制器 用来循环执行采样器和其他逻辑控制器,例如一个用户发送特定请求多次,即可 ...
- Linux 安装Zookeeper<集群版>(使用Mac远程访问)
阅读本文需要先阅读安装Zookeeper<准备> 一 架构细节 zookeeper集群根据投票选举的机制 选出leader和follower zookeeper集群节点建议是奇数 这里我准 ...