知止而后有定,定而后能静,静而后能安,安而后能虑,虑而后能得。

ConcurrentHashMap

在多线程环境下,使用HashMap进行put操作时存在丢失数据的情况,为了避免这种bug的隐患,强烈建议使用ConcurrentHashMap代替HashMap,为了对ConcurrentHashMap有更深入的了解,本文将对ConcurrentHashMap1.7和1.8的不同实现进行分析。

1.7实现

数据结构

jdk1.7中采用Segment + HashEntry的方式进行实现,结构如下:

ConcurrentHashMap初始化时,计算出Segment数组的大小ssize和每个SegmentHashEntry数组的大小cap,并初始化Segment数组的第一个元素;其中ssize大小为2的幂次方,默认为16,cap大小也是2的幂次方,最小值为2,最终结果根据根据初始化容量initialCapacity进行计算,计算过程如下:

1
2
3
4
5
if (c * ssize < initialCapacity)
    ++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
    cap <<= 1;

其中Segment在实现上继承了ReentrantLock,这样就自带了锁的功能。

put实现

当执行put方法插入数据时,根据key的hash值,在Segment数组中找到相应的位置,如果相应位置的Segment还未初始化,则通过CAS进行赋值,接着执行Segment对象的put方法通过加锁机制插入数据,实现如下:

场景:线程A和线程B同时执行相同Segment对象的put方法

1、线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
2、线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
3、当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行;

size实现

因为ConcurrentHashMap是可以并发插入数据的,所以在准确计算元素时存在一定的难度,一般的思路是统计每个Segment对象中的元素个数,然后进行累加,但是这种方式计算出来的结果并不一样的准确的,因为在计算后面几个Segment的元素个数时,已经计算过的Segment同时可能有数据的插入或则删除,在1.7的实现中,采用了如下方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
try {
    for (;;) {
        if (retries++ == RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                ensureSegment(j).lock(); // force creation
        }
        sum = 0L;
        size = 0;
        overflow = false;
        for (int j = 0; j < segments.length; ++j) {
            Segment<K,V> seg = segmentAt(segments, j);
            if (seg != null) {
                sum += seg.modCount;
                int c = seg.count;
                if (c < 0 || (size += c) < 0)
                    overflow = true;
            }
        }
        if (sum == last)
            break;
        last = sum;
    }
} finally {
    if (retries > RETRIES_BEFORE_LOCK) {
        for (int j = 0; j < segments.length; ++j)
            segmentAt(segments, j).unlock();
    }
}

先采用不加锁的方式,连续计算元素的个数,最多计算3次:
1、如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;
2、如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数;

1.8实现

数据结构

1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,结构如下:

只有在执行第一次put方法时才会调用initTable()初始化Node数组,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

put实现

当执行put方法插入数据时,根据key的hash值,在Node数组中找到相应的位置,实现如下:

1、如果相应位置的Node还未初始化,则通过CAS插入相应的数据;

1
2
3
4
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
        break;                   // no lock when adding to empty bin
}

2、如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
if (fh >= 0) {
    binCount = 1;
    for (Node<K,V> e = f;; ++binCount) {
        K ek;
        if (e.hash == hash &&
            ((ek = e.key) == key ||
             (ek != null && key.equals(ek)))) {
            oldVal = e.val;
            if (!onlyIfAbsent)
                e.val = value;
            break;
        }
        Node<K,V> pred = e;
        if ((e = e.next) == null) {
            pred.next = new Node<K,V>(hash, key, value, null);
            break;
        }
    }
}

3、如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;

1
2
3
4
5
6
7
8
9
else if (f instanceof TreeBin) {
    Node<K,V> p;
    binCount = 2;
    if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
        oldVal = p.val;
        if (!onlyIfAbsent)
            p.val = value;
    }
}

4、如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;

1
2
3
4
5
6
7
if (binCount != 0) {
    if (binCount >= TREEIFY_THRESHOLD)
        treeifyBin(tab, i);
    if (oldVal != null)
        return oldVal;
    break;
}

5、如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount

size实现

1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
if ((as = counterCells) != null ||
    !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
    CounterCell a; long v; int m;
    boolean uncontended = true;
    if (as == null || (m = as.length - 1) < 0 ||
        (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
        !(uncontended =
          U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
        fullAddCount(x, uncontended);
        return;
    }
    if (check <= 1)
        return;
    s = sumCount();
}

1、初始化时counterCells为空,在并发量很高时,如果存在两个线程同时执行CAS修改baseCount值,则失败的线程会继续执行方法体中的逻辑,使用CounterCell记录元素个数的变化;

2、如果CounterCell数组counterCells为空,调用fullAddCount()方法进行初始化,并插入对应的记录数,通过CAS设置cellsBusy字段,只有设置成功的线程才能初始化CounterCell数组,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
else if (cellsBusy == 0 && counterCells == as &&
         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
    boolean init = false;
    try {                           // Initialize table
        if (counterCells == as) {
            CounterCell[] rs = new CounterCell[2];
            rs[h & 1] = new CounterCell(x);
            counterCells = rs;
            init = true;
        }
    } finally {
        cellsBusy = 0;
    }
    if (init)
        break;
}

3、如果通过CAS设置cellsBusy字段失败的话,则继续尝试通过CAS修改baseCount字段,如果修改baseCount字段成功的话,就退出循环,否则继续循环插入CounterCell对象;

1
2
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
    break;

所以在1.8中的size实现比1.7简单多,因为元素个数保存baseCount中,部分元素的变化个数保存在CounterCell数组中,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
            (int)n);
}
 
final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

通过累加baseCountCounterCell数组中的数量,即可得到元素的总个数;

谈谈ConcurrentHashMap1.7和1.8的不同实现的更多相关文章

  1. Java面试02|Java集合

    关于Java中并发集合有: (1)CouncurrentHashMap (2)CopyOnWriteArrayList (3)LinkedBlockingQueue (4)ArrayBlockingQ ...

  2. ConcurrentHashmap中的size()方法简单解释

    本文所有的源码都是基于JDK1.8 ConcurrentHashmap中的size()方法源码: public int size() { long n = sumCount(); return ((n ...

  3. 为并发而生的 ConcurrentHashMap(Java 8)

    HashMap 是我们日常最常见的一种容器,它以键值对的形式完成对数据的存储,但众所周知,它在高并发的情境下是不安全的.尤其是在 jdk 1.8 之前,rehash 的过程中采用头插法转移结点,高并发 ...

  4. 在Java路上,我看过的一些书、源码和框架(转)

    原文地址:http://www.jianshu.com/p/4a41ee88bd82 物有本末,事有终始,知所先后,则近道矣 面试经历 关于Java面试,你应该准备这些知识点关于Java面试,你应该准 ...

  5. Java 容器源码分析之ConcurrentHashMap

    深入浅出ConcurrentHashMap(1.8) 前言 HashMap是我们平时开发过程中用的比较多的集合,但它是非线程安全的,在涉及到多线程并发的情况,进行put操作有可能会引起死循环,导致CP ...

  6. ConcurrentHashMap原理分析(1.7与1.8)-put和 get 需要执行两次Hash

    ConcurrentHashMap 与HashMap和Hashtable 最大的不同在于:put和 get 两次Hash到达指定的HashEntry,第一次hash到达Segment,第二次到达Seg ...

  7. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

  8. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  9. 谈谈一些有趣的CSS题目(十二)-- 你该知道的字体 font-family

    开本系列,谈谈一些有趣的 CSS 题目,题目类型天马行空,想到什么说什么,不仅为了拓宽一下解决问题的思路,更涉及一些容易忽视的 CSS 细节. 解题不考虑兼容性,题目天马行空,想到什么说什么,如果解题 ...

随机推荐

  1. 调用外部 DLL 中的函数(1. 早绑定)

    ,b,t,);end; end.

  2. 怎样用MathType输入带分数

    MathType作为一种常用的数学公式编辑器.虽然其操作已经很简单了,但是对于刚刚接触MathType的新用户来说,一些最基本的MathType输入也是有一定难度的,一些人在MathType分数的编辑 ...

  3. HEVC 有损优化一

    前期通过X86汇编和C的优化,HEVC 编码有了大幅的提升,目前320x240可以到4~5 fps 了.从现在开始无损优化先放放(还有很大的优化空间),开始做有损优化.做有损优化,我们设定的前提是ps ...

  4. linux下 安装mysql教程

    安装环境:系统是 centos6.5 1.下载 下载地址:http://dev.mysql.com/downloads/mysql/5.6.html#downloads 下载版本:我这里选择的5.6. ...

  5. day26<网络编程>

    网络编程(网络编程概述) 网络编程(网络编程三要素之IP概述) 网络编程(网络编程三要素之端口号概述) 网络编程(网络编程三要素协议) 网络编程(Socket通信原理图解) 网络编程(UDP传输) 网 ...

  6. Python 解压缩Zip和Rar文件到指定目录

    #__author__ = 'Joker'# -*- coding:utf-8 -*-import urllibimport osimport os.pathimport zipfilefrom zi ...

  7. 基于Cocos2d-x学习OpenGL ES 2.0系列——OpenGL ES渲染之Shader准备(7)

    Cocos2d-x底层图形绘制是使用OpenGL ES协议的.OpenGL ES是什么呢? OpenGL ES(OpenGl for Embedded System)是OpenGL三维图形API的子集 ...

  8. jQUery中closest和parents的主要区别是

    ①,前者从当前元素开始匹配寻找,后者从父元素开始匹配寻找: ②,前者逐级向上查找,直到发现匹配的元素后就停止了,后者一直向上查找直到根元素,然后把这些元素放进一个临时集合中,再用给定的选择器表达式去过 ...

  9. poj_3321 线段树/树状数组

    题目大意 一个果树(每个节点的分叉数目不固定)上有N个分叉点(包括最末的叶节点),则有N-1条边,将分叉点进行从1到N编号,每个分叉点上均可以结水果.开始的时候,每个分叉点都有一个水果,之后进行一系列 ...

  10. struts2基础---->第一个Struts2程序

    学习struts2的第一个程序,这里只会涉及到简单的代码编写.有一个夜晚我烧毁了所有的记忆,从此我的梦就透明了:有一个早晨我扔掉了所有的昨天,从此我的脚步就轻盈了. Struts的项目